K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

1/2 + 1/4 +1/8 + 1/16 + 1/32 
= 16/32 + 3/32 + 4/32 + 2/32 + 1/32 

=26/32 =13/16

15 tháng 7 2018

13/36 nha bn

DD
3 tháng 3 2021

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}+\frac{1}{128}-\frac{1}{256}\)

\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}\)

\(A+2A=\left(\frac{1}{2}-\frac{1}{4}+...-\frac{1}{256}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{128}\right)\)

\(3A=1-\frac{1}{256}< 1\)

\(\Rightarrow A< \frac{1}{3}\).

1 tháng 3 2018

Cau a sai de

1 tháng 3 2018

ừ mình nhầm

a,(19x+2*5^2)/14=(13-8)^2-4^2

22 tháng 2 2017

             \(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)

         = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{512}-\frac{1}{1024}\)

        =  \(1-\frac{1}{1024}\)

       = \(\frac{1023}{1024}\)

k mình nha các bạn

23 tháng 6 2016

\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}.\)

\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}\)

\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32}\)

\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}=...=\frac{1}{2}\)

\(A=\frac{1}{2}-\frac{1}{64}=\frac{31}{64}.\)

23 tháng 6 2016

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(=\frac{1}{2}-\frac{1}{64}=\frac{31}{64}\)

28 tháng 4 2018

a/  Tinh giá trị:

\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\) 

b/  Chứng minh:

\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\) 

-  Với mọi số tự nhiên n khác không thì luôn có:   \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:

 \(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\) 

   \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\) 

c/  Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\) 

    \(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

   Vậy:            \(F>\frac{7}{12}\) .

14 tháng 4 2016

1/2 x 1/3 + 1/4

( 1/2 x 1/3 ) + 1/4

1/6 + 1/4

5/12

ngongocanhtho

14 tháng 4 2016

1/2x1/3+1/4

=1/6+1/4

=5/12

1 tháng 3 2022

gfvfvfvfvfvfvfv555