1 phần 2 + 1 phần 4 + 1 phần 8 + 1 phần 16 + 1phan 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}+\frac{1}{128}-\frac{1}{256}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}\)
\(A+2A=\left(\frac{1}{2}-\frac{1}{4}+...-\frac{1}{256}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{128}\right)\)
\(3A=1-\frac{1}{256}< 1\)
\(\Rightarrow A< \frac{1}{3}\).
\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{512}-\frac{1}{1024}\)
= \(1-\frac{1}{1024}\)
= \(\frac{1023}{1024}\)
k mình nha các bạn
\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}.\)
\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}\)
\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32}\)
\(A+\frac{1}{64}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}=...=\frac{1}{2}\)
\(A=\frac{1}{2}-\frac{1}{64}=\frac{31}{64}.\)
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=\frac{1}{2}-\frac{1}{64}=\frac{31}{64}\)
a/ Tinh giá trị:
\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\)
b/ Chứng minh:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
- Với mọi số tự nhiên n khác không thì luôn có: \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\)
c/ Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)
\(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy: \(F>\frac{7}{12}\) .
1/2 x 1/3 + 1/4
( 1/2 x 1/3 ) + 1/4
1/6 + 1/4
5/12
ngongocanhtho
1/2 + 1/4 +1/8 + 1/16 + 1/32
= 16/32 + 3/32 + 4/32 + 2/32 + 1/32
=26/32 =13/16
13/36 nha bn