(x+10)(\(\dfrac{720}{x}-6\))=720
giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{10;-10\right\}\)
Ta có: \(\dfrac{720}{x+10}+4=\dfrac{720}{x-10}\)
\(\Leftrightarrow\dfrac{720\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}+\dfrac{4\left(x^2-100\right)}{\left(x+10\right)\left(x-10\right)}=\dfrac{720\left(x+10\right)}{\left(x+10\right)\left(x-10\right)}\)
Suy ra: \(720x-7200+4x^2-400-720x-7200=0\)
\(\Leftrightarrow4x^2=14800\)
\(\Leftrightarrow x^2=3700\)
hay \(x\in\left\{10\sqrt{37};-10\sqrt{37}\right\}\)
ĐKXĐ: \(x\ne\pm10\)
\(\Leftrightarrow\dfrac{180}{x-10}-\dfrac{180}{x+10}=1\)
\(\Leftrightarrow\dfrac{180\left(x+10-x+10\right)}{\left(x-10\right)\left(x+10\right)}=1\)
\(\Leftrightarrow\dfrac{3600}{x^2-100}=1\)
\(\Rightarrow x^2-100=3600\)
\(\Leftrightarrow x^2=3700\)
\(\Leftrightarrow x=\pm10\sqrt{37}\) (thỏa mãn)
bài 1:
\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)
<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)
<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)
vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0
nên x-2004=0=>x=2004
vyaj.......
bài 2:
\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
vì 1/15+1/13+1/11+1/9 khác 0
=>x-100=0<=>x=100
điều kiện xác định \(x\ne0\)
ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)
\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)
tới đây bn bấm máy tính nha
ĐKXĐ \(x\ne8;x\ne11;x\ne9;x\ne10\)
\(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
\(\Leftrightarrow\left(\dfrac{8}{x-8}+1\right)+\left(\dfrac{11}{x-11}+1\right)=\left(\dfrac{9}{x-9}+1\right)+\left(\dfrac{10}{x-10}+1\right)\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}=\dfrac{x}{x-9}+\dfrac{x}{x-10}\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
1) x=0
2) \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
\(\Leftrightarrow\dfrac{x-11+x-8}{\left(x-8\right)\left(x-11\right)}-\dfrac{x-10+x-9}{\left(x-9\right)\left(x-10\right)}=0\)
\(\Leftrightarrow\dfrac{2x-19}{\left(x-8\right)\left(x-11\right)}=\dfrac{2x-19}{\left(x-9\right)\left(x-10\right)}\)
\(\Leftrightarrow\dfrac{2x-19}{x^2-19x+88}=\dfrac{2x-19}{x^2-19x+90}\)
do \(x^2-19x+88\ne x^2-19x+90\)
\(\Rightarrow2x-19=0\)
=> x=\(\dfrac{19}{2}\)
Vậy x=\(0\); x=\(\dfrac{19}{2}\)
Tik
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
ĐK: ` x \ne 10; x \ne 0`
`120/(x-10)-3/5=120/x`
`<=>120/(x-10)-120/x=3/5`
`<=>1/(x-10) - 1/x= 1/200`
`<=> (x-x+10)/(x(x-10)) = 1/200`
`<=> 10/(x(x-10))= 1/200`
`<=> x^2-10=2000`
`<=>` \(\left[{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)
Vậy `S={50;-40}`.
`120/(x-10)-3/5=120/x(x ne 0,x ne 10)`
`<=>40/(x-10)-1/5=40/x`
`<=>200x-x(x-10)=200(x-10)`
`<=>200x-200x+2000-x^2+10x=0`
`<=>x^2-10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=50,x_2=-40`
Vậy `S={50,-40}`
ĐK: ` x \ne 0`
`(x+10)(720/x-6)=720`
`<=>(720(x+10))/x-6(x+10)=720`
`<=>(720x+7200)/x-6x-60=720`
`<=>7200/x-6x=60`
`<=>7200-6x^2=60x`
`<=>` \(\left[{}\begin{matrix}x=30\\x=-40\end{matrix}\right.\)
Vậy `S={30;-40}`.
\((x+10)(\dfrac{720}{x}-6)=720\) (ĐK: x≠0)
⇔\(720x-6x^2+7200-60x=720x\)
⇔\((x-30)(x+40)=0\)
⇔\(\left[\begin{array}{} x-30=0\\ x+40=0 \end{array} \right.\)⇔\(\left[\begin{array}{} x=30\\ x=40 \end{array} \right.\)
Vậy S={30;−40}S={30;-40}.