Tính A = \(\left(1^3-1000\right)\cdot\left(2^3-1000\right)\cdot...\cdot\left(2018^3-1000\right)\).Kb vs mik nha! ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong biểu thức trên có chứa (1000-103), mà (1000-103)=1000-1000=0
Do đó tích trên bằng 0
\(\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-10^3\right)...\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-1000\right)...\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\cdot0\cdot\left(1000-50^3\right)\)
\(=0\)
#)Giải :
a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)
b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
\(2009^{\left(1000-1^3\right).\left(1000-2^3\right)...\left(1000-15^3\right)}\)
= \(2009^{\left(1000-1^3\right).\left(1000-2^3\right)...\left(1000-10^3\right)..\left(1000-15^3\right)}\)
= \(2009^{\left(1000-1^3\right).\left(1000-2^3\right)...\left(1000-1000\right)..\left(1000-15^3\right)}\)
= \(2009^{\left(1000-1^3\right).\left(1000-2^3\right)...0..\left(1000-15^3\right)}\)
= \(2009^0\)
= \(1\)
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)
= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)
=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018
=1/2018
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
`#3107.101107`
`-3^2 + {-54 \div [-2^8 + 7] * (-2)^2}`
`= -9 + [-54 \div (-256 + 7) * 4]`
`= -9 + [-54 \div (-249) * 4]`
`= -9 + (18/83 * 4)`
`= -9 + 72/83`
`= -675/83`
______
`31 * (-18) + 31 * (-81) - 31`
`= 31 * (-18 - 81 - 1)`
`= 31 * (-100)`
`= -3100`
___
`(-12) * 47 + (-12) * 52 + (-12)`
`= (-12) * (47 + 52 + 1)`
`= (-12) * 100`
`= -1200`
___
`13 * (23 + 22) - 3 * (17 + 28)`
`= 13 * 45 - 3 * 45`
`= 45 * (13 - 3)`
`= 45 * 10`
`= 450`
____
`-48 + 48 * (-78) + 48 * (-21)`
`= 48 * (-1 - 78 - 21)`
`= 48 * (-100)`
`= -4800`
\(A=\)\(\left(1^3-1000\right).\left(2^3-1000\right)\)\(.....\left(2018^3-1000\right)\)
\(A=\left(1^3-1000\right).\left(2^3-1000\right)...\left(10^3-1000\right)...\left(2018^3-1000\right)\)
\(A=\left(1^3-1000\right).\left(2^3-1000\right)...0...\left(2018^3-1000\right)\)
\(A=0\)
~~~Hok tốt~~~