K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

Ta có : 

\(F=-3x^2-6x-4=-3\left(x^2+2x+\frac{4}{3}\right)=-3\left(x^2+2x+1+\frac{1}{3}\right)\)

\(=-3\left(x+1\right)^2-1< 0\forall x\)

Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow-3\left(x+1\right)^2\le0\forall x;-1< 0\)

Vậy ta có đpcm 

23 tháng 6 2021

Trả lời:

\(F=-3x^2-6x-4=-3.\left(x^2+2x+\frac{4}{3}\right)=-3.\left[\left(x^2+2x+1\right)+\frac{1}{3}\right]\)

\(=-3.\left[\left(x+1\right)^2+\frac{1}{3}\right]=-3\left(x+1\right)^2-1\)

ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow-3\left(x+1\right)^2\le0\forall x\)

\(\Leftrightarrow-3\left(x+1\right)^2-1\le-1\forall x\)( đpcm )

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1

Vậy biểu thức F có giá trị âm với mọi x

23 tháng 6 2021

\(F=-3x^2-6x-4=-\left(3x^2+6x+4\right)\)

\(=-3\left(x^2+2x+\dfrac{4}{3}\right)=-3\left(x^2+2x+1+\dfrac{1}{3}\right)\)

\(=-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]\)

\(do\) \(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\)

\(=>-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]\le-1\)

\(=>-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]< 0\)\(=>F< 0\left(\forall x\right)\)

12 tháng 8 2019

Giúp mk với ạ

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:

a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên

$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$

Vậy biểu thức luôn nhận giá trị âm với mọi $x$

b.

$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$

$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

c.

$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

d.

$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

\(E=x^2+6x+11\)

\(=x^2+6x+9+2\)

\(=\left(x+3\right)^2+2>0\forall x\)

\(F=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

20 tháng 9 2021

Cho em hỏi là câu G là gì ạ?

 

29 tháng 3 2020

cảm ơn các bạn nhiều

31 tháng 3 2020

\(-\frac{1}{4}x^2+x-2\)

\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)

\(=-\left(\frac{1}{2}x-1\right)^2-1\)

Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)

Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến

21 tháng 9 2022

Không biê

16 tháng 7 2021

mng giúp e với ặk

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

21 tháng 11 2018