K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

a: ta có: ΔAHB vuông tại H

mà HD là đường trug tuyến

nên HD=AB/2=AD(1)

Ta có: ΔAHC vuông tại H

mà HE là đường trung tuyến

nên HE=AE(2)

Từ (1) và (2) suy ra AH là đường trung trực của DE

hay D và E đối xứng nhau qua AH

b: Xét ΔABC có 

D là trung điểm của AB

E là trug điểm của AC

Do đó: DE là đường trung bình

=>DE//HF

Xét ΔABC có 
D là trung điểm của AB

F là trung điểm của BC

Do đó:DF là đường trung bình

=>DF=AC/2=HE

Xét tứ giác DEFH có DE//HF

nên DEFH là hình thang

mà DF=HE

nên DEFH là hình thang cân

25 tháng 2 2017

bạn ơi cho mình hình đc ko?

17 tháng 11 2022

a: Xét tứ giác AEMD có

góc AEM=góc ADM=góc DAE=90 độ

nên AEMD là hình chữ nhật

b: Vì M đối xứng với N qua AB

nên ABvuông góc với MN tại E và E là trung điểm của MN

Xét tứ giác AMBN có

E là trung điểm chung của AB và MN

nên AMBN là hình bình hành

mà MA=MB

nên AMBN là hình thoi

c: Xét tứ giác ANMC có

NM//AC

NM=AC

Do đó: ANMC là hình bình hành

=>AM cắt CN tại trung điểm của mỗi đường

=>C,O,N thẳng hàg

11 tháng 2 2020

A B C E H F D K M O N

MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)

=> góc FMB = góc ACB (đồng vị)

mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)

=> góc FMB = góc ABC 

xét tam giác BDM và tam giác MFB có : BM chung 

góc BDM = góc BFM = 90

=> tam giác BDM = tam giác MFB (ch-gn)

=> BD = FM (đn)       (1)

xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM  = 90

=> FHEM là hình chữ nhật  (dh)

=> FM = HE (tc)    và (1)

=> BD = HE       (2)

kẻ DO // AC 

=> góc BOD = góc ACB  (đồng vị)

góc ACB = góc ABC (cmt)

=> góc DBO = góc DOB  

=> tam giác DOB cân tại D (dh)

=> BD = DO    và (2)

=> DO = HE 

mà HE = CK (gt)

=> DO = CK       (3)

gọi DK cắt BC tại N

xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)

góc ODN = góc NKC do DO // AC (cách vẽ)    và (3)

=> tam giác DNO = tam giác KNE (g-c-g)

=> DN = NK (đn)

mà N nằm giữa D và K 

=> N là trung điểm của DK 

N thuộc BC 

=> BC đi qua trung điểm của DK