K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

Kẻ \(AH\perp BC\) tại H

Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\)

Áp dụng hệ thức lượng vào tam giác vuông AED có:

\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))

\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)

Vậy...

a: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{BM}=\dfrac{4}{6}=\dfrac{2}{3}\)

b: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)

Xét ΔAMC có 

ME là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Ta có: M là trung điểm của BC

nên MB=MC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

c: Xét ΔABC có 

\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC

1: Xét tứ giác AFDE có

\(\widehat{AFD}=\widehat{AED}=\widehat{FAE}=90^0\)

Do đó: AFDE là hình vuông

2: Xét ΔBED vuông tại E và ΔBHA vuông tại H có 

\(\widehat{B}\) chung

Do đó; ΔBED∼ΔBHA

5 tháng 2 2022

1. 

a) Gọi G là giao của BE và DC.

-Xét △BEF và △BCF có:

\(BE=BC\) (gt).

\(\widehat{EBF}=\widehat{CBF}\) (BF là tia phân giác của \(\widehat{EBC}\)).

\(BF\) là cạnh chung.

=>△BEF = △BCF (c-g-c).

=>\(\widehat{BEF}=\widehat{BCF}=90^0\) (2 góc tương ứng).

=>BG⊥FI tại E.

-Ta có: \(\widehat{GED}+\widehat{EGD}=90^0\) (△DEG vuông tại D).

\(\widehat{EGD}+\widehat{EFD}=90^0\) (△GEF vuông tại E).

=>\(\widehat{GED}=\widehat{EFD}\).

-Xét △GED và △EFD có:

\(\widehat{GED}=\widehat{EFD}\) (cmt)

\(\widehat{GDE}=\widehat{FED}=90^0\)

=>△GED ∼ △EFD (g-g),

=>\(\dfrac{GD}{GE}=\dfrac{ED}{EF}\) (2 tỉ lệ tương ứng) (1).

-Xét △ABE có: AB//GD (ABCD là hình chữ nhật).

=>\(\dfrac{AB}{GD}=\dfrac{BE}{GE}\) (định lí Ta-let).

=>\(\dfrac{AB}{BE}=\dfrac{GD}{GE}\) (2)

-Xét △AEI có: AI//DF (ABCD là hình chữ nhật).

=>\(\dfrac{AE}{DE}=\dfrac{EI}{EF}\) (định lí Ta-let).

=>\(\dfrac{AE}{EI}=\dfrac{DE}{EF}\) (3).

-Từ (1),(2),(3) suy ra: \(\dfrac{AB}{BE}=\dfrac{AE}{EI}\)

=>\(AB.EI=BE.AE\) mà \(BE=BC\) (gt)

=>\(AB.EI=BC.AE\).

b) -Xét △ABE và △EBI có:

\(\widehat{BAE}=\widehat{BEI}=90^0\)

\(\widehat{B}\) là góc chung.

=>△ABE ∼ △EBI (g-g).

=>\(\dfrac{AE}{BE}=\dfrac{EI}{BI}\) (2 tỉ lệ tương ứng).

=>\(AE=\dfrac{EI.BE}{BI}\)

=>\(AE^2=\dfrac{EI^2.BE^2}{BI^2}\)

=>\(\dfrac{1}{AE^2}=\dfrac{BI^2}{EI^2.BE^2}\)

Mà \(BI^2=EI^2+BE^2\) (△BEI vuông tại E).

=>\(\dfrac{1}{AE^2}=\dfrac{EI^2+BE^2}{EI^2.BE^2}=\dfrac{1}{BE^2}+\dfrac{1}{EI^2}\)

 

 

6 tháng 2 2022

2)

a) -Ta có: \(\widehat{BMD}+\widehat{DME}+\widehat{CME}=180^0\)

\(\widehat{DBM}+\widehat{DMB}+\widehat{BDM}=180^0\) (tổng 3 góc trong △BDM).

\(\widehat{DME}=\widehat{DBM}\left(gt\right)\)

\(\Rightarrow\widehat{CME}=\widehat{BDM}\).

-Xét △BDM và △CME có:

\(\widehat{BDM}=\widehat{CME}\) (cmt).

\(\widehat{DBM}=\widehat{MCE}\) (△ABC cân tại A).

\(\Rightarrow\)△BDM ∼ △CME (g-g).

\(\Rightarrow\dfrac{BD}{BM}=\dfrac{CM}{CE}\) (2 tỉ lệ tương ứng).

Mà \(BM=CM=\dfrac{1}{2}BC\) (M là trung điểm BC).

\(\Rightarrow\dfrac{BD}{\dfrac{1}{2}BC}=\dfrac{\dfrac{1}{2}BC}{CE}\)

\(\Rightarrow BD.CE=\dfrac{1}{4}BC^2\).

b) -Ta có: \(\dfrac{BD}{CM}=\dfrac{DM}{ME}\) (△BDM ∼ △CME)

Mà  \(BM=CM\) (M là trung điểm BC).

\(\Rightarrow\dfrac{BD}{BM}=\dfrac{DM}{ME}\)

-Xét △BDM và △MDE có:

\(\widehat{DBM}=\widehat{DME}\left(gt\right)\)

\(\dfrac{BD}{BM}=\dfrac{DM}{ME}\) (cmt).

\(\Rightarrow\)△BDM ∼ △MDE (c-g-c).

\(\Rightarrow\widehat{BDM}=\widehat{MDE}\) (2 góc tương ứng) hay DM là phân giác của \(\widehat{BDE}\).

 

 

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
19 tháng 4 2018

sorry , I don't no

Em lớp 6 , chịu thôi

KB ko chị

19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu