khoanh tròn chỉ một chữ cái đứng trước câu trả lời đúng
cho dãy số \(\frac{1}{8},\frac{1}{24},\frac{1}{48},\frac{1}{80},\frac{1}{120}\).......
a, tổng của mười số hạng đầu tiên của dãy số trên
b, số 1/2000 là số hạng thứ bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)
=> Số hạng thứ 98 là : \(\frac{99^2}{98.100}\)
=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)
Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)
=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)
Vậy ta cần tính tích:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)
= \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)
=\(\frac{99.2}{1.100}=\frac{99}{50}\)
Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).
Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).
Chọn đáp án D.
Qui luật là thế này nha em : 1/1x2 ;1/2*3;1/3*4 ,....
Cái tính tổng thì tách 1/2=1-1/2 ;1/6=1/2-1/3;1/12=1/3-1/4 tương tự đi cộng lại là ra
Ta thấy: \(1\frac{1}{3}=\frac{4}{3}=\frac{2.2}{1.3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3.3}{2.4}\)
\(1\frac{1}{15}=\frac{16}{15}=\frac{4.4}{3.5}\)
\(...\)
\(1=\frac{4064256}{4064255}=\frac{2016.2016}{2015.2017}\)
Tích 2015 số đầu tiên của dãy là:
\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2016.2016}{2015.2017}\)
\(=\frac{2.2.3.3...2016.2016}{1.3.2.4...2015.2017}\)
Thấy tử và mẫu có 1 số thừa số chung nên ta rút gọn là:
=2.2.3.3...2016.2016/1.3.2.4...2015.2017
=2/2017
Ta có:\(1\frac{1}{3}=\frac{4}{3}\frac{2,2}{1,3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3,3}{2,4}\)
\(1\frac{1}{15}=\frac{10}{15}=\frac{4,4}{3,5}\)
\(1\frac{4064256}{4064256}=\frac{2016,2016}{2015,2017}\)
Tích 2015 số đầu tiên của số là:
\(\frac{2,2}{1,3},\frac{3,3}{2,4}......\frac{2016,2016}{2015,2017}\)
\(=\frac{2,2,3,3.....2016,2016}{2,3,2,4.....2015,2017}\)
Thấy tử và mẫu
có một thừa số chung nên ta rút gọn là:
=2/2017