Giúp chi tiết giúp e với ạ🥺
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(2m-6)^2-4(m^2+3)
=4m^2-24m+36-4m^2-12=-24m+24
Để phương trình có hai nghiệm phân biệt thì -24m+24>0
=>m<1
x1^2+x2^2=36
=>(x1+x2)^2-2x1x2=36
=>(2m-6)^2-2(m^2+3)=36
=>4m^2-24m+36-2m^2-6-36=0
=>2m^2-24m-6=0
=>m^2-12m-3=0
=>\(m=6-\sqrt{39}\)
\(n_{Fe}=\dfrac{22,4}{56}=0,4\left(mol\right)\\
pthh:Fe+H_2SO_4\rightarrow FeSO_4+H_2\)
0,4 0,4 0,4
\(V_{H_2}=0,4.22,4=8,96l\\
m_{FeCl_2}=0,4.127=50,8g\\
n_{Fe_2O_3}=\dfrac{14}{160}=0,0875\left(mol\right)\\
pthh:Fe_2O_3+3H_2\underrightarrow{t^o}2Fe+3H_2O\)
\(LTL:\dfrac{0,0875}{1}< \dfrac{0,4}{3}\)
=> H2 dư
\(n_{H_2\left(p\text{ư}\right)}=3n_{Fe_2O_3}=0,2625\left(mol\right)\\
m_{H_2\left(d\right)}=\left(0,4-0,2625\right).2=0,275g\\
n_{Fe}=2n_{Fe_2O_3}=0,175\left(mol\right)\\
m_{Fe}=0,175.56=9,8g\)
\(n_{N_2}=\dfrac{1792:1000}{22,4}=0,08\left(mol\right)\)
\(5Mg+12HNO_3\rightarrow5Mg\left(NO_3\right)_2+N_2+6H_2O\)
x x \(\dfrac{1}{5}x\)
\(10Al+36HNO_3\rightarrow10Al\left(NO_3\right)_3+3N_2+18H_2O\)
y y \(\dfrac{3}{10}y\)
gọi x và y là số mol của Mg và Al
có hệ: \(\left\{{}\begin{matrix}\dfrac{1}{5}x+\dfrac{3}{10}=0,08\\24+27y=7,8\end{matrix}\right.\)
=> x = 0,1 và y = 0,2
=> \(m_{muôií}=m_{Mg\left(NO_3\right)_2}+m_{Al\left(NO_3\right)_3}=0,1.148+0,2.213=57,4\left(g\right)\)
1.
$(m^2-m-1)x-5m=(3-m)x$
$\Leftrightarrow (m^2-m-1+m-3)x=5m$
$\Leftrightarrow (m^2-4)x=5m$
$\Leftrightarrow (m-2)(m+2)x=5m$
Nếu $m=-2$ thì $0x=-10$ (vô lý) $\Rightarrow$ pt vô nghiệm
Nếu $m=2$ thì $0x=10$ (vô lý) $\Rightarrow$ pt vô nghiệm
Nếu $m\neq \pm 2$ thì pt có nghiệm duy nhất $x=\frac{5m}{(m-2)(m+2)}$
2.
$m^2x+mx+x-m-2=0$
$\Leftrightarrow x(m^2+m+1)=m+2$
Vì $m^2+m+1=(m+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $m\in\mathbb{R}$
$\Rightarrow m^2+m+1\neq 0$
Do đó pt có nghiệm duy nhất $x=\frac{m+2}{m^2+m+1}$ với mọi $m\in\mathbb{R}$