CHỨNG MINH:
- \(\frac{1+\cos4a}{\cot a-\tan a}=\frac{1}{4}\sin4a\)
- \(\frac{\cot^22a-1}{2\cot a}-\cos8a.\cot4a=\sin8a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cot^2a+tan^2a=\frac{cos^2a}{sin^2a}+\frac{sin^2a}{cos^2a}=\frac{cos^4a+sin^4a}{sin^2a.cos^2a}=\frac{8\left(\frac{1+cos2a}{2}\right)^2+8\left(\frac{1-cos2a}{2}\right)^2}{2\left(2sina.cosa\right)^2}\)
\(=\frac{2+4cos2a+2cos^22a+2-4cos2a+2cos^22a}{2sin^22a}=\frac{4+4cos^22a}{2sin^22a}\)
\(=\frac{4+4\left(\frac{1+cos4a}{2}\right)}{2\left(\frac{1-cos4a}{2}\right)}=\frac{6+2cos4a}{1-cos4a}\)
Ta có: \(cot\left(2^kx\right)+\frac{1}{sin\left(2^kx\right)}=\frac{cos\left(2^kx\right)+1}{sin\left(2^kx\right)}=\frac{cos2\left(2^{k-1}x\right)+1}{sin2\left(2^{k-1}x\right)}\)
\(=\frac{2cos^2\left(2^{k-1}x\right)-1+1}{2sin\left(2^{k-1}x\right).cos\left(2^{k-1}x\right)}=\frac{cos\left(2^{k-1}x\right)}{sin\left(2^{k-1}x\right)}=cot\left(2^{k-1}x\right)\)
\(\Rightarrow\frac{1}{sin\left(2^kx\right)}=cot\left(2^{k-1}x\right)-cot\left(2^kx\right)\)
Lần lượt cho \(k\) chạy từ \(0\) đến \(2018\) ta được:
\(\frac{1}{sinx}=cot\left(\frac{x}{2}\right)-cotx\)
\(\frac{1}{sin2x}=cotx-cot2x\)
\(\frac{1}{sin4x}=cot2x-cot4x\)
\(\frac{1}{sin8x}=cot4x-cot8x\)
.....
\(\frac{1}{sin\left(2^{2018}x\right)}=cot\left(2^{2017}x\right)-cot\left(2^{2018}x\right)\)
Cộng vế với vế ta được:
\(\frac{1}{sinx}+\frac{1}{sin2x}+\frac{1}{sin4x}+\frac{1}{sin8x}+...+\frac{1}{sin\left(2^{2018}x\right)}=cot\left(\frac{x}{2}\right)-cot\left(2^{2018}x\right)\)
Đáp án B
Lời giải:
Áp dụng công thức: $\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x=2\cos ^2x-1$ ta có:
\(\frac{6+2\cos 4a}{1-\cos 4a}=\frac{6+2(2\cos ^22a-1)}{2\sin ^22a}=\frac{2+2\cos ^22a}{\sin ^22a}=\frac{2+2(\cos ^2a-\sin ^2a)^2}{4\sin ^2a\cos ^2a}\)
\(=\frac{1+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{(\sin ^2a+\cos ^2a)^2+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{2(\sin ^4a+\cos ^4a)}{2\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a}{\sin ^2a\cos ^2a}\)
\(=\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}=\tan ^2a+\cot ^2a\) (đpcm)
\(\frac{sin^22x+4sin^2x-4}{1-8sin^2x-cos4x}=\frac{4sin^2x.cos^2x-4\left(1-sin^2x\right)}{1-8sin^2x-\left(1-2sin^22x\right)}=\frac{4sin^2x.cos^2x-4cos^2x}{2sin^22x-8sin^2x}\)
\(=\frac{-4cos^2x\left(1-sin^2x\right)}{8sin^2x.cos^2x-8sin^2x}=\frac{-4cos^2x.cos^2x}{-8sin^2x\left(1-cos^2x\right)}=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)
\(\frac{cos2x}{cot^2x-tan^2x}=\frac{cos2x.sin^2x.cos^2x}{cos^4x-sin^4x}=\frac{\left(cos^2x-sin^2x\right).\left(2sinx.cosx\right)^2}{4\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)}=\frac{1}{4}sin^22x\)
\(tan^2a+cot^2a=\dfrac{sin^2a}{cos^2a}+\dfrac{cos^2a}{sin^2a}=\dfrac{sin^4a+cos^4a}{\left(sina.cosa\right)^2}=\dfrac{\left(sin^2a+cos^2a\right)^2-2\left(sina.cosa\right)^2}{\left(\dfrac{1}{2}.2sina.cosa\right)^2}\)
\(=\dfrac{1-\dfrac{1}{2}sin^22a}{\dfrac{1}{4}sin^22a}=\dfrac{8-4sin^22a}{2sin^22a}=\dfrac{8-2\left(1-cos4a\right)}{1-cos4a}=\dfrac{6+2cos4a}{1-cos4a}\)
Lời giải:
Ta có:
\(\frac{\tan ^3a}{\sin ^2a}-\frac{1}{\sin a\cos a}+\frac{\cot ^3a}{\cos ^2a}=\frac{\tan ^3a\cos ^2a+\cot ^3a\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos ^3a}.\cos ^2a+\frac{\cos ^3a}{\sin ^3a}.\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos a}+\frac{\cos ^3a}{\sin a}-\sin a\cos a}{\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a}{\sin ^3a\cos ^3a}\)
\(=\frac{(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a)}{\sin ^3a\cos ^3a}\)
\(=\frac{\sin ^6a+\cos ^6a}{\sin ^3a\cos ^3a}=\frac{\sin ^3a}{\cos ^3a}+\frac{\cos ^3a}{\sin ^3a}=\tan ^3a+\cot ^3a\)
Ta có đpcm.