Cho tam giác ABC vuông tại A,phân giác AD,đường cao AH,biết BD=15cm ,CD=20cm.Tính BH,CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có AD là đường phân giác
nên AB/AC=BD/CD=15/20=3/4
=>HB/HC=9/16
=>HB=9/16HC
Ta có: HB+HC=BC
=>9/16HC+HC=25
=>HC=16(cm)
=>HB=9(cm)
BC=15+20=35cm
BD/CD=3/4
=>AB/AC=3/4
BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16=35/25=1,4
=>BH=12,6cm; CH=22,4cm
A B C H 12
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)
\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)
* Áp dụng hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)
\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)
\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm
\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm
\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)
Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2
A B C H D 15 20
b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Lại có : \(BC=BD+DC=15+20=35\)cm
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)
\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm
\(\Rightarrow AB=\frac{3}{4}.28=21\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm
\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm
Áp dụng định lí Pytago cho tam giác AHD vuông tại H
\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
△ABC có AD là đường phân giác
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{15}{20}=\dfrac{3}{4}\\ \Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\\ \Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{\left(15+20\right)^2}{25}=49\\ \Rightarrow AB=\sqrt{49.9}=21\left(cm\right)\\ AC=\sqrt{49.16}=28\left(cm\right)\)
△ABC vuông tại A có \(AH\perp BC\)
\(\Rightarrow AH.BC=AB.AC\\ \Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{21.28}{35}=16,8\left(cm\right)\)
△ABC vuông tại A có \(AH\perp BC\)
\(\Rightarrow AB^2=AH.HB\\ \Rightarrow HB=\dfrac{AB^2}{AH}=\dfrac{21^2}{16,8}=26,25\left(cm\right)\\ HC=BC-HB=15+20-26,25=8,75\left(cm\right)\)
A B C H D 51 68
\(\Delta ABC\)vuông đường cao AH:
\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BC\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}}\)
\(\Leftrightarrow\frac{BH}{CH}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)
Vì AD là đường phân giác \(\Delta ABC\)(gt);
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{51}{68}=\frac{3}{4}\)
\(\Rightarrow\left(\frac{AB}{AC}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
\(\Rightarrow\frac{BH}{CH}=\frac{9}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{BH}{9}=\frac{CH}{16}=\frac{BH+CH}{9+16}=\frac{BC}{25}=\frac{BD+CD}{25}=\frac{119}{25}\)
\(\Rightarrow BH=\frac{9.119}{25}=42,84cm\)
\(\Rightarrow CH=\frac{16.119}{25}=76,16cm\)
\(BC=BD+CD=15+20=35\left(cm\right)\)
Xét tam giác \(ABC\)phân giác \(AD\):
\(\frac{AB}{BD}=\frac{AC}{CD}\)(tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\frac{AB}{15}=\frac{AC}{20}\Leftrightarrow AB=\frac{3}{4}AC\).
Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(\Leftrightarrow35^2=\left(\frac{3}{4}AC\right)^2+AC^2\Leftrightarrow AC^2=784\Leftrightarrow AC=28\left(cm\right)\)
\(AC^2=CH.BC\Leftrightarrow CH=\frac{AC^2}{BC}=\frac{28^2}{35}=22,4\left(cm\right)\)
\(BH=35-22,4=12,6\left(cm\right)\)