K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo!

2 tháng 8 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo!

2 tháng 8 2019

b) Theo câu a ta có: \(BE.CF=HE.HF\)

Mà \(HE^2=EB.EA;HF^2=FA.FC\)

=> \(HE^2.HF^2=EB.FC.EA.FA=HE.HF.EA.FA\)

=> \(EA.FA=HE.HF=\frac{AH^3}{BC}=\frac{x^3}{2a}\)

=> \(S_{AEF}=\frac{1}{2}.EA.FA=\frac{x^3}{4a}\)

c) Để Diện tích tam giác AEF đạt giá trị lớn nhất khi và chỉ khi x đạt giá trị lớn nhất

Ta có: \(x^2=AH^2=BH.CH\le\frac{\left(BH+CH\right)^2}{4}=\frac{BC^2}{4}=\frac{4a^2}{4}=a^2\)

=> \(x\le a\)

"=" xảy ra khi và chỉ khi BH=CH=a 

Vậy \(maxS_{ABC}=\frac{a^3}{4a}=\frac{a^2}{4}\) tại x=a

2 tháng 8 2019

cảm ơn cô nhiều <3

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là trung tuyến

nên AH là phân giác

c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có

AH chung

góc EAH=góc FAH

=>ΔAEH=ΔAFH

=>AE=AF
=>ΔAEF cân tại A

mà AI là phân giác

nên AI là trung tuyến