K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

xin bài này , 5 phút sau làm

1 tháng 7 2018

nếu ai trả lời trc tao , thì thằng đó tự đăng tự tl 

18 tháng 11 2019

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

18 tháng 11 2019

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

18 tháng 11 2019

gt \(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=3\). Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) suy ra \(xy+yz+zx=3\)

Quy về:Tìm Min \(A=\Sigma_{cyc}\frac{x^3}{\left(2z+y\right)}\)

11 tháng 10 2020

Ta sẽ sử dụng phương pháp Cauchy ngược dấu để CM bài toán này

Xét \(\frac{a^2}{a+2b^3}=\frac{a\left(a+2b^3\right)-2ab^3}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\)

\(=a-\frac{2ab^3}{a+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}\cdot\frac{ab}{\sqrt[3]{a}}\)

\(=a-\frac{2}{3}\cdot\left(b\sqrt[3]{a^2}\right)=a-\frac{2}{3}\cdot b\cdot\sqrt[3]{a\cdot a\cdot1}\)

\(\ge a-\frac{2}{9}\cdot b\cdot\left(a+a+1\right)=a-\frac{2b}{9}\left(2a+1\right)=a-\frac{2}{9}\left(2ab+b\right)\)

Tương tự ta biến đổi với các phân thức còn lại:

\(\frac{b^2}{b+2c^3}\ge b-\frac{2}{9}\left(2bc+c\right)\) và \(\frac{c^2}{c+2a^3}=c-\frac{2}{9}\left(2ca+a\right)\)

Cộng vế 3 BĐT trên lại ta được: \(P\ge\left(a+b+c\right)-\frac{2}{9}\left[2\left(ab+bc+ca\right)+\left(a+b+c\right)\right]\)

\(\ge3-\frac{2}{9}\left[2\cdot\frac{\left(a+b+c\right)^2}{3}+3\right]=3-\frac{2}{9}\left(2\cdot3+3\right)=1\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

Vậy Min(P) = 1 khi a = b = c = 1

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

29 tháng 1 2019

Bạn cho mình hỏi là chỉ a,b > 0 hay cả a,b,c > 0 vậy