tìm x : 264 * ( 5*x+103) =12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x=7+5=12
2: =>-29-x=-10
=>x+29=10
=>x=-19
3: =>x+7=-18
=>x=-25
4: =>x+19-11=0
=>x+8=0
=>x=-8
a, 71.2 – 6.(2x+5) = 10 5 : 10 3
71.2 – 6.(2x+5) = 10 2
6.(2x+5) = 71.2 – 100
6.(2x+5) = 42
x = 1
b, 5 x + 3 4 . 6 8 = 6 9 . 3 4
5 x + 3 4 . 6 8 = 6 8 . 6 . 3 4
5 x + 3 4 = 6 8 . 6 . 3 4 : 6 8 = 6 . 3 4
5x = 6 . 3 4 - 3 4 = 5 . 3 4
x = 3 4
c, 12:{390:[5. 10 2 – ( 5 3 + x . 7 2 )]} = 4
390:[5. 10 2 – ( 5 3 + x . 7 2 )] = 12:4 = 3
5. 10 2 – ( 5 3 + x . 7 2 ) = 390:3 = 130
5 3 + x . 7 2 = 5. 10 2 – 130 = 370
x . 7 2 = 370 – 5 3 = 245
x = 245: 7 2 = 5
d, 5 3 .(3x+2):13 = 10 3 : 13 5 : 13 4
5 3 .(3x+2):13 = 10 3 : 13
3x+2 = 10 3 : 13 : 5 3 .13 = 8
x = 2
49 x 37 = 37 x 49
(214 x 25) x 4 = 214 x (25 x 4)
103 x 18 + 103 x 12 = 103 x (18 + 12)
\(2436\cdot\left(5\cdot x+103\right)=12\)
\(5\cdot x+103=2436:12=203\)
\(5\cdot x=203-103=100\)
\(x=100:5=20\)
\(2436.\left(5x+103\right)=12\)
\(5x+103=12:2436\)
\(5x+103=12:2436\)
\(5x+103=\frac{1}{2003}\)
\(5x=\frac{1}{2003}-103\)
\(5x=\frac{-206308}{2003}\)
\(x=\frac{-206308}{2003}.\frac{1}{5}\)
\(x=\frac{-206308}{10015}\)
Vì x chia 6 dư 3; chia 8 dư 5; chia 12 dư 9
=> x-3 chia hết cho 6;8;12
=> x-3 \(\in\) BC(6;8;12) = {0;24;48;72;96;120;...;240;264;288;312;...}
=> x \(\in\) {3;27;51;75;...;243;267;291;315;...}
Mà 264 <x\(\le\) 300 => x \(\in\) {267;291}
a, 315-x=327-264
<=> 315-x=63
<=> x=315-63
<=>x=252
b, 147-x=10 x 5
<=> 147-x=50
<=> x= 147-50
<=> x=97
\(\left(315-x\right)+264=327\)
\(\left(315-x\right)=63\)
\(x=315-63\)
\(x=252\)
\(\left(147-x\right):5=10\)
\(\left(147-x\right)=50\)
\(x=147-50\)
\(x=97\)
Ta có \(131x-941=16\)
\(\Rightarrow131x=957\)
\(\Rightarrow x=\frac{957}{131}\)
b.\(12.\left(x-1\right):3=103\)
\(\Rightarrow12.\left(x-1\right)=309\)
\(\Rightarrow x-1=\frac{103}{4}\)
\(\Rightarrow x=\frac{107}{4}\)
a)
1 2 + − 3 5 + 1 10 ≤ x ≤ 8 3 + 14 6 ⇔ 0 ≤ x ≤ 5 x ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5
b)
11 3 + − 19 6 + − 15 2 ≤ x ≤ 19 12 + − 5 4 + − 10 3 ⇔ − 7 ≤ x ≤ − 3 x ∈ − 7 ; − 6 ; − 5 ; − 4 ; − 3