K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2015

Đặt \(130307=a;\text{ }140307=b\)

Pt trở thành \(\sqrt{a+b\sqrt{x+1}}=1+\sqrt{a-b\sqrt{x+1}}\)

\(\Leftrightarrow\sqrt{a+b\sqrt{x+1}}-\sqrt{a-b\sqrt{x+1}}=1\)

\(\Leftrightarrow a+b\sqrt{x+1}+a-b\sqrt{x+1}-2\sqrt{\left(a+b\sqrt{x+1}\right)\left(a-b\sqrt{x+1}\right)}=1\)

\(\Leftrightarrow2a-1=2\sqrt{a^2-b^2\left(x+1\right)}\)

\(\Leftrightarrow\left(2a-1\right)^2=4\left[a^2-b^2\left(x+1\right)\right]\)

\(\Leftrightarrow x+1=\frac{\left(2a-1\right)^2-4a^2}{-4b^2}\)

\(\Leftrightarrow x=\frac{4a^2-\left(2a-1\right)^2}{4b^2}-1\)

 

25 tháng 6 2021

ĐKXĐ : \(\left\{{}\begin{matrix}-130307\le140307\sqrt{1+y}\\130307\ge140307\sqrt{1+y}\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{1+y}\le\dfrac{130307}{140307}\)\(y\ge-1\)

\(PT\Leftrightarrow140307\sqrt{1+y}=-140307\sqrt{1+y}\)

\(\Leftrightarrow\)\(\sqrt{1+y}=0\)

\(\Leftrightarrow y=-1\) ( TM )

Vậy ...
 

25 tháng 6 2021

giúp em với mọi người ơi em đang cần gấp lắm ạ TT

NV
13 tháng 8 2021

ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Ta có:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Dấu "=" xảy ra khi và chỉ khi:

\(\sqrt{x+1}-3\ge0\Rightarrow x\ge8\)

Vậy nghiệm của pt là \(x\ge8\)

24 tháng 12 2020

ĐKXĐ \(x\ge1\)

\(P=\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}+\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{2\sqrt{x}+2}{x-1}\)

\(P=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-2\sqrt{x}-2}{x-1}\)

\(P=\dfrac{2x-2\sqrt{x}}{x-1}\)

\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

Giải phương trình ???

 

24 tháng 12 2020

x > 1 

.-.

3 tháng 2 2021

\(\sqrt{x-4\sqrt{x-1}+3}+\sqrt{x-6\sqrt{x-1}+8}=1\\ < =>\sqrt{x-1-2\sqrt{x-1}.2+4}+\sqrt{x-1-2\sqrt{x-1}.3+9}=1\\ < =>\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)ĐK: x>=1

\(< =>|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1\\ < =>\left(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\right)^2=1\\ < =>\sqrt{x-1}-2+2\left|\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-3\right)\right|+\sqrt{x-1}-3=1\\ < =>2\sqrt{x-1}-5+2\left|x+5-5\sqrt{x-1}\right|=1\\ < =>2\left|x+5-5\sqrt{x-1}\right|=6-2\sqrt{x-1}\\ < =>\left|x+5-5\sqrt{x-1}\right|=3-\sqrt{x-1}\)

\(< =>\left[{}\begin{matrix}x+5-5\sqrt{x-1}=3-\sqrt{x-1}\left(1\right)\\x+5-5\sqrt{x-1}=\sqrt{x-1}-3\left(2\right)\end{matrix}\right.\)

Giải (1): \(x+5-5\sqrt{x-1}=3-\sqrt{x-1}\\ < =>x+2-4\sqrt{x-1}=0\\ < =>x-1-2\sqrt{x-1}.2+4=1\\ < =>\left(\sqrt{x-1}-2\right)^2=1\\ < =>\left[{}\begin{matrix}\sqrt{x-1}-2=1\\\sqrt{x-1}-2=-1\end{matrix}\right.< =>\left[{}\begin{matrix}x=8\\x=0\left(loại\right)\end{matrix}\right.\)

Giải (2) cũng ra x=8

6 tháng 9 2021

\(\sqrt{x+2\sqrt{x}+1}-\sqrt{x-2\sqrt{x}+1}=2\left(x\ge0\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}-\sqrt{\left(\sqrt{x}-1\right)^2}=2\\ \Leftrightarrow\sqrt{x}+1-\left|\sqrt{x}-1\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1-\left(\sqrt{x}-1\right)=2,\forall\sqrt{x}-1\ge0\\\sqrt{x}+1-\left(1-\sqrt{x}\right)=2,\forall\sqrt{x}-1< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0\sqrt{x}=0,\forall x\ge1\\\sqrt{x}=1,\forall x< 1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\in R,x\ge1\\x=1,x< 1\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x\in R,x\ge1\)

15 tháng 7 2021

`\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-1}(x>=1)`

`<=>\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\sqrt{x-1}`

`<=>\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=2\sqrt{x-1}`

`<=>|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\sqrt{x-1}`

`<=>\sqrt{x-1}+1+|\sqrt{x-1}-1|=2\sqrt{x-1}`

`<=>|\sqrt{x-1}-1|=\sqrt{x-1}-1`

`<=>\sqrt{x-1}-1>=0``

`<=>sqrt{x-1}>=1`

`<=>x-1>=1`

`<=>x>=2`

Vậy `S={x|x>=2}`

NV
15 tháng 3 2022

ĐKXĐ: \(x\ge1\)

Do \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{x^2-x^2+1}=1\)

Đặt \(\sqrt{x-\sqrt{x^2-1}}=t\Rightarrow\sqrt{x+\sqrt{x^2-1}}=\dfrac{1}{t}\)

Phương trình trở thành:

\(t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\Rightarrow t=1\)

\(\Rightarrow\sqrt{x-\sqrt{x^2-1}}=1\Leftrightarrow x-\sqrt{x^2-1}=1\)

\(\Leftrightarrow x-1=\sqrt{x^2-1}\)

\(\Rightarrow x^2-2x+1=x^2-1\)

\(\Rightarrow x=1\) (thỏa mãn)

25 tháng 12 2020

\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{x-1}-1=0\)

\(\Leftrightarrow x-1-\sqrt{x-1}-1=0\) (1)

Đặt \(\sqrt{x-1}\) = t (t \(\ge0\))

pttt : t2 - t - 1 =0

\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\) 

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{1-\sqrt{5}}{2}\left(ktm\right)\\t=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\end{matrix}\right.\)

=> \(\sqrt{x-1}=\dfrac{1+\sqrt{5}}{2}\)

\(\Leftrightarrow x-1=\dfrac{3+\sqrt{5}}{2}\)

\(\Leftrightarrow x=\dfrac{5+\sqrt{5}}{2}\) (tm)

p/s: thử lại hộ mình nhaa

 

 

25 tháng 12 2020

cái chỗ kia sai r á : \(\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

như này mới đúng