Nếu 2 vòi nước cùng chảy vào một cái bể không có nước thì sau 12 giờ bể đầy Sau khi hai vòi cùng chảy 8 giờ thì người ta khoá vòi 1. Còn vòi 2 tiếp tục chảy. Do tăng công suất vòi 2 lên gấp đôi, nên vòi 2 đã chảy đầy phần còn lại của bể trong 3 giờ rưỡi. Hỏi nếu mỗi vòi chảy một mình với công suất bình thường thì phải bao lâu mới đầy bể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là x giờ thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là y giờ
ĐK: x, y > 12
Trong 1 giờ, vòi 1 chẩy được 1/x bể
Trong 1 giờ, vòi 2 chẩy được 1/y bể
Trong 1 giờ, cả hai vòi chẩy được 1/12 bể
Ta có phương trình: 1/x + 1/y = 1/12 (1)
Trong 8 giờ cả hai vòi chẩy được 8/12 bể hay 2/3 bể còn lại là 1/3 bể vòi 2 chẩy trong 3,5 giờ với năng suất là 2/y ta có phương trình:
3,5 . 2/y = 1/3 hay 7/y = 1/3 (2) Từ (1) và (2)
ta có hệ phương trình: {1/x + 1/y = 1/12 (1) {7/y = 1/3 (2)
Giải HPT này ta tìm được: x = 28 (tmđk) y = 21 (tmđk)
Vậy thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là 28 giờ thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là 21 giờ
Gọi thời gian chảy riêng để đầy bể của vòi I, vòi II lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hpt \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{12}\\\frac{8}{a}+\frac{8}{b}+\frac{\left(3+\frac{1}{2}\right).2}{b}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{28}\\\frac{1}{b}=\frac{1}{21}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=28\\b=21\end{cases}}\)
Vậy ...
Gọi thời gian vòi 1 chảy một mình đầy bể là x (giờ)
Thời gian vòi 2 chảy một mình đầy bể là y (giờ)
Trong 1 giờ, vòi 1 chảy được: \(\frac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được \(\frac{1}{y}\)(bể)
=> Trong 1 giờ, 2 vòi chảy được: \(\frac{1}{x}\) + \(\frac{1}{y}\) (bể)
Cả 2 vòi cùng chảy vào bể thì sau 12 giờ đầy bể nên trong 1 giờ: 2 vòi chảy được: \(\frac{1}{12}\) (bể)
Ta có: \(\frac{1}{x}\) + \(\frac{1}{y}\) = \(\frac{1}{12}\) (1)
Sau 8 giờ, vòi 1 và vòi 2 chảy được là: \(\frac{8}{x}+\frac{8}{y}\) (bể)
Vòi 2 tăng năng suất lên gấp đôi nên trong một giờ, vòi 2 chảy được \(\frac{2}{y}\) (bể)
=> Trong 3,5 giờ, Vòi 2 chảy được 3,5 .\(\frac{2}{y}\) = \(\frac{7}{y}\) (bể)
Khi đó, bể đầy nên ta có PT: \(\frac{8}{x}+\frac{8}{y}\) + \(\frac{7}{y}\) = 1 (2)
Giải hệ (1)(2) => x; y
Mỗi giờ vòi thứ nhất chảy một mình được số phần bể là:
\(1\div8=\frac{1}{8}\)(bể)
Mỗi giờ vòi thứ hai chảy một mình được số phần bể là:
\(1\div12=\frac{1}{12}\)(bể)
Mỗi giờ hai vòi chảy chung được số phần bể là:
\(\frac{1}{8}+\frac{1}{12}=\frac{5}{24}\)(bể)
Sau \(4\)giờ chảy chung thì còn số phần bể chưa có nước là:
\(1-\frac{5}{24}\times4=\frac{1}{6}\)(bể)
Bể đầy nước sau số giờ là:
\(\frac{1}{6}\div\frac{1}{8}=\frac{4}{3}\left(h\right)\)
1 giờ vòi 1 và 2 chảy được số phần bể
3/4:9=1/12( bể)
1 giờ vòi 2 và 3 chảy được số phần bể
7/12:5=7/60( bể )
1 giờ vòi 3 và 1 chảy được số phần bể
3/5:6=1/10( bể)
1giowf cả 3 vòi chảy được số phần bể
(1/12+7/60+1/10):2=3/10( bể)
Thời gian cả 3 vòi cùng chảy đầy bể
1:3/10=10/3( giờ)=3 giờ 20 phút
Đáp số: 3 giờ 20 phút
1 giờ vòi 1 chảy được số phần của bể nước :
1:6=1/6 bể nước
1 giờ vòi 2 chảy được số phần của bể nước:
1:9=1/9 bể nước
Phân số chỉ số phần cả 2 bể phải chảy :
1-1/6=5/6 bể nước
Thời gian để 2 vòi chảy đầy bểL
5/6 : (1/9+1/6)= 3 giờ
Đáp số : 3 giờ
trong 1 giờ vòi 1 chảy được: 1 : 6 = 1/6 (bể)
còn phải chảy thêm: 1 - 1/6 = 5/6 (bể)
trong 1 giờ hai vòi chảy được: 1/6 + 1/9 = 5/18 (bể)
phải chảy trong số giờ là: 5/6 : 5/18 = 3 (giờ)
Đáp số: 3 giờ
Gọi thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là x giờ
thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là y giờ
ĐK: x, y > 12
Trong 1 giờ, vòi 1 chẩy được 1/x bể
Trong 1 giờ, vòi 2 chẩy được 1/y bể
Trong 1 giờ, cả hai vòi chẩy được 1/12 bể
Ta có phương trình: 1/x + 1/y = 1/12 (1)
Trong 8 giờ cả hai vòi chẩy được 8/12 bể hay 2/3 bể
còn lại là 1/3 bể vòi 2 chẩy trong 3,5 giờ với năng suất là 2/y
ta có phương trình: 3,5 . 2/y = 1/3
hay 7/y = 1/3 (2)
Từ (1) và (2) ta có hệ phương trình:
{1/x + 1/y = 1/12 (1)
{7/y = 1/3 (2)
Giải HPT này ta tìm được:
x = 28 (tmđk)
y = 21 (tmđk)
Vậy thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là 28 giờ
thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là 21 giờ