K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

Với x = 0 thì \(y=\pm1\)

Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)

Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)

Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)

giải phương trình này, ta được: x = -1 haowcj x = 3

Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)

24 tháng 6 2018

đã xong , xin tích trc rồi ta làm :)

DD
13 tháng 7 2021

\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)

\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)

\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)

\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)

\(=\left(2x^2+16x+7\right)^2-49\)

\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)

\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)

Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).

27 tháng 10 2019

tôi ko biết

27 tháng 10 2019

phân tích đa thức thành nhân tử

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

13 tháng 11 2019

Đặt: \(a=\frac{2}{1-\sqrt[3]{2}}\)

<=> \(\left(1-\sqrt[3]{2}\right)a=2\)

<=> \(a-2=\sqrt[3]{2}a\)

<=> \(\left(a-2\right)^3=\left(\sqrt[3]{2}a\right)^3\)

<=> \(a^3-6a^2+12a-8=2a^3\)

<=> \(a^3+6a^2-12a+8=0\)

Vậy phương trình ẩn x cần tìm là: \(x^3+6x^2-12x+8=0\)

23 tháng 3 2016

a) với x=1=> (1)^3+a.1-4.1-4=0<=> 1+a-8=0<=>a=7

b) ta có phương trình 

x^3+7x-4x-4 =0<=> x^3+3x-4=0

<=> x^3-x+4x-4=0

<=> x(x^2-1)+4(x-1)=0

<=> x(x-1)(x+1)+4(x-1)=0

<=> (x-1)(x^2+x+4)=0

<=> ..... tự làm tiếp nha

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)

TL

XY=60

Học tốt

Sai mik sorry

12 tháng 11 2021

xem có sai đề ko