K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

bạn tự vẽ hình

vì Ax // By nên góc xAB +  góc yBA  = 180 độ (hai góc trong cùng phía thì bù nhau, tính chất song song)

=> góc CAB + góc CBA = 180 -( 30 + 40 ) = 110 

mà tổng 3 góc của 1 tam giác = 180 nên góc ACB = 70 độ

đợi minkf tí

minhf không vẽ hình nha

2 tháng 4 2019

Đáp án C

Phương pháp:  Δ φ = 2 π d λ

Cách giải:

+ Áp dụng hệ thức lượng trong tam giác vuông OMN có đường cao OH:

1 O H 2 = 1 O M 2 + 1 O N 2 ⇔ 1 O H 2 = 1 34 2 + 1 50 2 ⇒ O H = 28,1 c m

+ Gọi d là  khoảng cách từ O đến K (K là 1 điểm bất kì trên MN)

+ Độ lệch pha giữa K và O là:  Δ φ = 2 π d λ

+ Để K dao động cùng pha với O thì:  Δ φ = 2 π d λ = 2 k π ⇒ d = k λ

+ Số điểm dao động cùng pha với o trên đoạn MN bằng số giá trị k nguyên thoả mãn:

28,1 ≤ k λ ≤ 34 ⇒ 7,025 ≤ k ≤ 8,5 ⇒ k = 8 28,1 < k λ ≤ 50 ⇒ 7,025 < k ≤ 12,5 ⇒ k = 8 ; 9 ; 10 ; 11 ; 12

Có 6 giá trị của k thoả mãn  ⇒ trên đoạn MN có 6 điểm dao động cùng pha với nguồn

12 tháng 2 2019

Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.a)  Chứng minh rằng:DAMC đồng dạng với DBMD.b)  Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.ACc)  Vẽ MH vuông góc...
Đọc tiếp

Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.

a)  Chứng minh rằng:DAMC đồng dạng với DBMD.

b)  Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.AC

c)  Vẽ MH vuông góc với CD tại H. Chứng minh:HM2 = HC.HD

d)  Gọi I là giao điểm của BC và AD. Chứng minh: DE.IA = ID.EC

Câu 2. Cho DABC có ba góc nhọn, AB < AC , đường cao AH và trung tuyến AD. Kẻ DE, DF lần lượt vuông góc với AB, AC tại E, F. Chứng minh:

a)   DABH DDBE

b)    AC.DF = AH.DC

c)   DE = AC

DF     AB

Câu 3. Cho D ABC vuông tại A có AB = 8cm, AC = 6cm.

a)  Vẽ đường cao AH. Chứng minh: D ABC       D HBA.

b)  Qua C vẽ đường thẳng song song với AB và cắt AH tại D. Chứng minh: D AHB           D DHC.

c)  Chứng minh : AC2 = AB. DC

d)  Tứ giác ABDC là hình gì? Vì sao? Tính diện tích của tứ giác ABDC.

Câu 4. Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm và hai đường chéo cắt nhau tại O. Qua B kẻ đường thẳng a vuông góc với BD, a cắt DC kéo dài tại E.

a)  Chứng minh: DBCE DDBE.

b)  Tính tỉ số SBCE,SDBE

c)  Kẻ đường cao CF của DBCE . Chứng minh :AC. EF = EB. CF

Câu 5. Cho tam giác ABC vuông tại A có AH là đường cao(H ΠBC ) .

a)  Chứng minhD AHB ∽DCHA .

b)  Trên tia đối của tia AC lấy điểm D, vẽ AE vuông góc với BD tại E.Chứng minh D AEB ∽D DAB .

c)  Chứng minh.BD = BH.BC .
d)  Chứng minh BHE = BDC .

1

5:

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

b: Xét ΔAEB vuông tại E và ΔDAB vuông tại A có

góc ABE chung

=>ΔAEB đồng dạng với ΔDAB

c: ΔABD vuông tại A có AE là đường cao

nên BE*BD=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BE*BD=BH*BC

d: BE*BD=BH*BC

=>BE/BC=BH/BD

=>ΔBEH đồng dạng với ΔBCD

=>góc BHE=góc BDC

3 tháng 1 2021

Trả lời hộ mình cái xin. mình đã 2 năm ko on r giờ mới on lại :(((.Xin mọi người trả lời giúp mình :(((