K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2022

Áp dụng định lý pitago: \(AC=\sqrt{12^2+9^2}=\sqrt{225}=15\left(cm\right)\)

Xét tam giác HBA và tam giác ABC, có:

\(\widehat{BHA}=\widehat{ABC}=90^o\)

\(\widehat{A}\): chung

Vậy tam giác HAB đồng dạng tam giác BAC ( g.g )

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AB}{AC}=\dfrac{HB}{BC}\)

\(\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{12^2}{15}=9,6\left(cm\right)\)

\(\Rightarrow HB=\dfrac{AB.BC}{AC}=\dfrac{12.9}{15}=7,2\left(cm\right)\)

\(S_{AHB}=\dfrac{1}{2}.AH.HB=\dfrac{1}{2}.9,6.7,2=34,56\left(cm^2\right)\)

 

29 tháng 5 2022

a,

Xét Δ HBA và Δ BAC, có :

\(\widehat{BHA}=\widehat{ABC}=90^o\)

\(\widehat{ABH}=\widehat{CAB}\) (cùng phụ \(\widehat{ABC}\))

=> Δ HBA ~ Δ BAC (g.g)

31 tháng 10 2023

a: ΔABD vuông tại A

=>\(BD^2=AB^2+AD^2\)

=>\(BD^2=9^2+12^2=225\)

=>BD=15(cm)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot15=12\cdot9=108\)

=>AH=108/15=7,2(cm)

XétΔABD vuông tại A có \(sinBDA=\dfrac{AB}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)

nên \(\widehat{BDA}\simeq37^0\)

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=HD\cdot HB\)

c: Xét ΔHDN vuông tại H và ΔHMB vuông tại H có

\(\widehat{HDN}=\widehat{HMB}\left(=90^0-\widehat{DBC}\right)\)

Do đó: ΔHDN đồng dạng với ΔHMB

=>HD/HM=HN/HB

=>\(HM\cdot HN=HD\cdot HB=HA^2\)

1 tháng 11 2023

c.ơn bn nhiều 

1 tháng 11 2023

c.ơn bn nhiều

3 tháng 4 2018

a) 

vì ABCD hình chữ nhật nên ta có AB//CD 

=> góc ABH= góc BDC ( so le trong, AB//CD)

 xét tam giác AHB,BCD có 

góc A= góc C =90

góc ABH=BDC(cmt)

=> tam giác AHB đồng dạng với tam giác CDB (gg)

b)

vì ABCD hcn nên 

AB=CD=12

BC=AD=9

AD Đlí pytado cho tam giác vuông CDB có 

BD2=BC2+DC2

BD2=81+144

BD=15cm

theo câu a) ta có

AH/AB=BC/BD

=> AH= AB.BC chia BD

AH= 12.9 chia 15

AH= 7.2CM

C)

BD

2 tháng 1 2019

Vì △ AHB đồng dạng  △ BCD với tỉ số đồng dạng: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 = k 2 = 0 , 8 2  = 0,64 ⇒ S A H B = 0 , 64 . S B C D

S B C D  = 1/2 BC.CD = 1/2 .12.9 = 54( c m 2 )

Vậy  S A H B = 0 , 64 . S B C D  = 0,64.54 = 34,56 ( c m 2 ).

12 tháng 5 2021

a) Xét tam giác AHB và tam giác BCD ta có:

AHB = BCD (=90^0)

ABH = BDC (AB // CD và 2 góc slt)

=> Tam giác AHB đồng dạng với tam giác BCD (G-G)

b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm

Tam giác AHB đồng dạng với tam giác BCD (G-G)

\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)

=> AH = 7,2 cm

c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được  HB = 9,6cm

\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)