K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Đặt \(a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)

Thì \(\Rightarrow a+b+c=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{x+y+y+z+z+x}{2}=\)\(x+y+z=1\)

Bất đẳng thức đã tương đương với \(x+2y+z\ge4\left(x+y\right).\left(y+z\right).\left(z+x\right)\)

\(\Rightarrow a+b\ge16abc\)

Ta có: \(\left(a+b\right).\left(a+b+c\right)^2\ge4\left(a+b\right).4c\left(a+b\right)\ge16abc\left(đpcm\right).\)

10 tháng 6 2018

cảm ơn bn

28 tháng 6 2017

CMR a+2b+c >= 4(1-a)(1-b)(1-c) - Bất đẳng thức và cực trị - Diễn đàn Toán học

28 tháng 6 2017

bạn có thể giải giúp mình bài toán nay ko. giúp mình nha

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

13 tháng 3 2021

Thầy ơi, nhưng câu này là đề thi huyện chỗ em á thầy, em cũng chả biết làm sao nữa, chả nhẽ đề thi huyện lại sai:"(

NV
5 tháng 11 2021

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

31 tháng 7 2018

Link này bạn: Câu hỏi của 2K4 - Toán lớp 8 - Học toán với OnlineMath

14 tháng 5 2018

Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)

Áp dụng BĐT Cauchy Schwarz, ta có:

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

=> ĐPCM

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)

13 tháng 5 2020

Áp dụng BĐT Cosi cho 2 số dương, ta có:

\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)

Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)

8 tháng 11 2019

Từ giả thiết , ta có :

\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)

\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)

Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :

\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)

\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)

\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra:

\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)

\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)

Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:

\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\) 

10 tháng 11 2019

ta có:

xyz=(1-x).(1-y).(1-z)                                 (1)

=>1=(1:x-1).(1:y-1).(1:z-1)

4 tháng 11 2017

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3

19 tháng 6 2017

có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)

\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)

\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).

tương tự và cộng lại ta có ngay đpcm.

Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0