Bài 1: Chứng minh rằng:
1)\(\frac{1}{5}< A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}\)
2)\(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}>\frac{65}{132}\)
3)\(C=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)
4)\(\frac{1}{6}< D=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
5)\(E=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Bài 2 : Cho \(D=\frac{12}{\left(2\cdot4\right)^2}+\frac{20}{\left(4\cdot6\right)^2}+...+\frac{388}{\left(96\cdot98\right)^2}+\frac{396}{\left(98\cdot100\right)^2}\)
Hãy so sánh\(D\) với \(\frac{1}{4}\)
Cảm ơn các bạn nhiều!