tìm giá trị của Y:
aaa \ 37 * Y = a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
aaa : 37 x y =a
a x 111 : 37 x y = a
111 : 37 x y = a : a
3 x y =1
y=1/3
Ta có:
aaa : 37 x y =a
a x 111 : 37 x y = a
111 : 37 x y = a : a
3 x y =1
y=1/3
Ta có :
aaa : 37 .x y = a
a x 111 : 37 x y = a
a x 3 x y = a
=> 3 x y = 1
=> y = 1/3
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
P= (x2+2xy+y2)+(x+y)+(x2+4x+4)+21/4
P=(x+y)2+2(x+y)x1/2+1/4+(x+2)2+5
p=(X+Y+1/2)2+(x+2)2+5 >=0
Dấu bằng xảy ra khi:
x+y+1/2=0
x+2=0
Bạn tự giải nốt nhé
bạn ơi giải thích cho mình tại sao lại lấy được P=(x+y+1/2)^2 + (x+2)^2+5 đc ko
Vì (2x-6)^2 và |-5-y| đều >= 0 nên P < = -0-0+37 = 37
Dấu "=" xảy ra <=> 2x-6=0 và -5-y=0 <=> x=3 và y=-5
Vậy Max P = 37 <=> x=3 và y=-5
Tk mk nha
ta có: aaa : 37.y = a
=> 111.a.1/37.y = a
=> 111.1/37.a.y = a
111/37.a.y = a
111/37.y = a:a
111/37.y = 1
y = 1 : 111/37
y = 37/111
aaa : 37 x y = a
a . 111 . \(\frac{1}{37}\). y = a
111 . 1/37 . y = a : a
111 . 1/37 . y = 1
y = 1 : 111 : 1/37
y = 1/3
\(\frac{aaa}{37\times y}=a\)
\(\Rightarrow37\times y=aaa:a\)
\(37\times y=\frac{aaa}{a}=\frac{111.a}{a}=111\)
\(\Rightarrow37\times y=111\)
\(y=111:37\)
\(y=3\)
\(\frac{\overline{aaa}}{37Y}=a\Leftrightarrow37Y=\frac{\overline{aaa}}{a}=111\Leftrightarrow Y=3\)
Vậy số đó là 3