Cho hình thang ABCD ( AB//CD). Một đường thẳng d song song với đáy, cắt 2 cạnh bên AD tại P và cắt BC tại Q; đường thẳng d chia hình thang thành 2 phần có diện tích bằng nhau. Tính độ dài đoạn thẳng PQ; Biết AB= 9 cm và CD = 15 cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
a:Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔDAB có
M là trung điểm của AD
ME//AB
Do đó: E là trung điểm của BD
Xét ΔABC có
N là trung điểm của BC
NF//AB
Do đó: F là trung điểm của AC
a: Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔADC có
M là trung điểm của AD
MF//DC
Do đó: F là trung điểm của AC
Xét ΔBDC có
N là trung điểm của BC
NE//DC
Do đó: E là trung điểm của BD
a) Xét hình thang ABCD(AB//CD) có
M∈AD(Gt)
N∈BC(gt)
MN//AB//DC(gt)
Do đó: \(\dfrac{AM}{AD}=\dfrac{BN}{BC}\)(Định lí Ta lét)(1)
Xét ΔADC có
M∈AD(Gt)
K∈AC(Gt)
MK//DC(gt)
Do đó: \(\dfrac{AM}{AD}=\dfrac{MK}{DC}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔBDC có
H∈BD(Gt)
N∈BC(Gt)
HN//DC(gt)
Do đó: \(\dfrac{BN}{BC}=\dfrac{HN}{DC}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MK}{DC}=\dfrac{HN}{DC}\)
⇔MK=HN
⇔MK+KH=HN+KH
⇔MH=NK(đpcm)
chúc thi tốt :)))