K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

:\(x^4-4x+3=\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(x^2-x\right)-\left(3x-3\right)\)

                                  \(=x^3\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)\)

                                \(=\left(x^3+x^2+x-3\right)\left(x-1\right)\)

   \(=\left(x^2+2x+3\right)\left(x-1\right)^2\)(cái này bạn phân tích vế \(x^3+x^2+x-3=\left(x^2+2x+3\right)\left(x-1\right)\)là được

Ta có:\(\left(x-1\right)^2\ge0\)(luôn đúng).Dấu"="<=>x=1(1)

lại có \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\)(2)

nhân vế (1) và (2) \(\Rightarrowđpcm\)

 Dấu"="<=>x=1

Xong rồi đấy,bạn k cho mình nhé

16 tháng 1 2019

Sai đề kìa

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y\)

16 tháng 1 2019

haiz!chán vcl nên mới trả lời câu này

Áp dụng bất đẳng thức AM-GM,ta có:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

dấu "=" xảy ra khi và chỉ khi \(x=y\)

\(\Rightarrow you\)sai đề

11 tháng 11 2016

Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\) \(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge2\left(xy+yz+zx\right)+\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

Đẳng thức xảy ra khi x = y = z 

11 tháng 11 2016

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2-3\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(z-x\right)^2\ge0\)Luôn đúng ( đpcm )

dấu "=" xẩy ra khi và chỉ khi x = y = z 

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

4 tháng 9 2021

tiếp đi bạn

 

 

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

27 tháng 4 2016

<=>4x^2-4x+1+2

<=>(2x-1)^2+2 >0 với mọi x

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

2 tháng 10 2019

Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!

3 tháng 10 2021

\(4x^2+4x+\frac{3}{2}\)

\(=4x^2+4x+1+\frac{1}{2}\)

\(=\left(2x+1\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)(đpcm)