K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2023

*Chứng minh AMNC là tứ giác nội tiếp.

Ta có AB=BD nên △ABD cân tại B.

\(\Rightarrow\widehat{ADB}=\widehat{BAD}\left(1\right)\)

Trong (O) có: \(\widehat{MAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AB.

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB.

\(\Rightarrow\widehat{MAB}=\widehat{ADB}\left(2\right)\)

Tứ giác ABCD nội tiếp có \(\widehat{BCN}\) là góc ngoài ở đỉnh C.

\(\Rightarrow\widehat{BCN}=\widehat{BAD}\left(3\right)\)

(1), (2), (3) \(\Rightarrow\widehat{MAB}=\widehat{BCN}\).

\(\Rightarrow\)AMNC nội tiếp.

*Chứng minh yêu cầu đề bài.

AMNC nội tiếp \(\Rightarrow\widehat{AMN}=\widehat{ACD}\) (\(\widehat{ACD}\) là góc ngoài ở đỉnh C).

Mà \(\widehat{ACD}=\widehat{ABD}\) (ABCD nội tiếp)

\(\Rightarrow\widehat{AMN}=\widehat{ABD}\) (đpcm)

28 tháng 3 2017

A B C D E

Xét \(\Delta AEB\)và \(\Delta DEC\)

\(\hept{\begin{cases}\widehat{AEB}=\widehat{DEC}\\\widehat{BAE}=\widehat{CDE}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AEB\approx\Delta DEC\)

\(\Rightarrow\frac{AE}{DE}=\frac{BE}{CE}\)

\(\Rightarrow EA.EC=DE.BE\left(1\right)\)

Xét \(\Delta ABE\)và \(\Delta DBA\)

\(\hept{\begin{cases}\widehat{BAE}=\widehat{BDA}\left(gt\right)\\\widehat{ABE}\left(chung\right)\end{cases}}\)

\(\Rightarrow\Delta ABE\approx\Delta DBA\)

\(\Rightarrow\frac{AB}{DB}=\frac{BE}{AB}\)

\(\Rightarrow AB^2=DB.BE\left(2\right)\)

Theo đề bài ta cần chứng minh

\(BE^2=AB^2-EA.EC\)

\(\Leftrightarrow BE^2=AB^2-DE.BE\)(theo (1))

\(\Leftrightarrow BE\left(BE+DE\right)=AB^2\)

\(\Leftrightarrow BE.BD=AB^2\) (Theo (2) thì cái này đúng)

Vậy ta có ĐPCM

25 tháng 3 2017

bạn có thể gửi hình vào facebook của mình https://www.facebook.com/maximilian.mark.16 để mình giải thử cho bạn

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

a) Xét ΔBAD và ΔABC có 

AB chung

\(\widehat{BAD}=\widehat{ABC}\)(gt)

AD=BC(gt)

Do đó: ΔBAD=ΔABC(c-g-c)

Suy ra: BD=AC(hai cạnh tương ứng)

Xét ΔADC và ΔBCD có 

AD=BC(gt)

AC=BD(cmt)

DC chung

Do đó: ΔADC=ΔBCD(c-c-c)

Suy ra: \(\widehat{ADC}=\widehat{BCD}\)(hai góc tương ứng)

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

\(\Leftrightarrow2\cdot\widehat{BAD}+2\cdot\widehat{ADC}=360^0\)

\(\Leftrightarrow\widehat{BAD}+\widehat{ADC}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

Xét tứ giác ABCD có AB//CD(cmt)

nên ABCD là hình thang(Định nghĩa hình thang)

Hình thang ABCD(AB//CD) có AC=BD(cmt)

nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

28 tháng 7 2021

còn thiếu câu b

 

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Ủa H là điểm nào thế bạn?

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

1 tháng 5 2016

Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I