Cho hệ phương trình : \(\hept{\begin{cases}6x+2y=\frac{m^6}{x^2}\\6y+2x=\frac{m^6}{y^2}\end{cases}}\)
a) Giải hệ phương trình với m=1
b) Chứng minh rằng hệ phương trình có nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x-my=2\left(1\right)\\mx+2y=1\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow x=2+my\)(3)
Thế (3) vào (2) ta được:
\(m\left(2+my\right)+2y=1\)
\(\Rightarrow2m+m^2y+2y=1\)
\(\Rightarrow y\left(m^2+2\right)=1-2m\)
Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow m^2+2\ne0\)
\(\Leftrightarrow m^2\ne-2\)(luôn đúng)
Vậy hệ phương trình luôn có nghiệm duy nhất với mọi tham số m
Với m =1 suy ra :
\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)
b ) Để hệ có nghiệm x+2y=3
\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)
\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)