cho tam giac ABC can tai A, duong cao AD. biet AB=10cm; BC=12cm
. a, tinh do dai cac doạn thẳng BD, AD
b gọi G là trọng tâm của tam giác ABC. CMR 3 diểm A,G,D thẳng hàng
c, CM tam giác ABG= tam giác ACG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không pk đúng hay sai nữa do
mình mới học lớp 8 à
chúc bạn học tốt
b: góc ADE+góc ABD=90 độ
góc AED=góc HEB=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADE=góc AED
=>AD=AE
a: BD là phân giác
=>DA/AB=DC/BC
=>DA*BC=DC*AB
=>DC*AB=AE*BC
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)
a) Xét tam giác ABC cân tại A
có: AD là đường cao ứng với cạnh BC (gt)
=> AD là đường trung tuyến của BC ( tính chất của tam giác cân)
=> BD = CD
mà \(D\in BC\)
=> BD + CD = BC
=> BD + BD = BC
2 BD = BC
thay số: 2.BD = 12
BD = 12 :2
BD = 6 cm
Xét tam giác ABD vuông tại D
có: \(BD^2+AD^2=AB^2\left(py-ta-go\right)\)
thay số: \(6^2+AD^2=10^2\)
\(AD^2=10^2-6^2\)
\(AD^2=64\)
\(\Rightarrow AD=8cm\)
b) ta có: G là trọng tâm của tam giác ABC
=> BG là đường trung tuyến của AC ( định lí)
mà AD là đường trung tuyến của BC ( phần a)
=> AD cắt BG tại G ( định lí)
=> A,G,D thẳng hàng
c) Xét tam giác ABC cân tại A
có: AD là đường cao ứng với cạnh BC (gt)
=> AD là đường phân giác của góc BAC ( tính chất trong tam giác cân)
=> góc BAG = góc CAG( tính chất phân giác)
Xét tam giác ABG và tam giác ACG
có: AB = AC ( gt)
\(\widehat{BAG}=\widehat{CAG}\left(cmt\right)\)
AG là cạnh chung
\(\Rightarrow\Delta ABG=\Delta ACG\left(c-g-c\right)\)
sorry bn nha! nhưng mk ko bít kẻ hình trên này, bn kẻ giúp mk nhé!
a) theo đề bài ta có: tam giác ABC cân tại A nên cạnh AB=ACmà AB=10 cm => AC= 10 (cm)
Vì tam giác ABC cân nên đường cao AD sẽ tạo ra 1 đường chính giữa AB chia thành 2 phần bằng nhau ( gọi là đường trung trực)
=> BD=DC=\(\frac{12}{2}\) = 6 cm
Theo định lí Pytago ta có:
102 - 62 = 100 - 36 =64 cm => \(\sqrt{64}\) = 8 cm Vậy cạnh AC = 10 cm; AD= 8 cm
b)AD là đường trung tuyến . G là trọng tâm => G thuộc AD => A,H,G thẳng hàng
c) Xét tam giác ABG và tam giác ACG:
Có : AB=AC (theo câu a)
AG chung
GB = GC ( vì G là trọng tâm nên cách đều 3 cạnh của tam giác)
Vậy tam giác ABG= tam giác ACG ( cạnh-cạnh-cạnh)