a) Chứng minh rằng với mọi số n nguyên dương đều có : A = 5n ( 5n + 1) - 6n ( 3n + 2 ) chia hết cho 91
b) Tìm tất cả các số nguyên tố p sao cho : p2 + 14 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, +, Nếu p=2 thì : p^2+14 = 18 ko tm
+, Nếu p=3 thì : p^2+14 = 23 tm
+, Nếu p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3
Mà p^2+14 > 3 => p^2+14 là hợp số
Vậy p = 3
Tk mk nha
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
a) n + 5 chia hết cho n - 2
=> ( n - 2 ) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }
n-2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 10 |
Vậy n = { -5 ; 1 ; 3 ; 10 )
b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)
\(\Rightarrow35n+50-35n-49⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
=> ƯCLN(7n + 10 ; 5n + 7) = 1
=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm )
Bài làm:
a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)
Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)
b) Gọi \(\left(7n+10;5n+7\right)=d\)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)
\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)
\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)
\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\pm1\)
=> 7n+10 và 5n+7 nguyên tố cùng nhau
=> đpcm