Một người đi xe máy từ thành phố A đến thành phố B với một vận tốc định trước. Hai thành phố cách nhau 150km. Sau khi đi được 1/5 quãng đường thì người đó tăng vận tốc thêm 10km/h trên toàn bộ quãng đường còn lại. Tính vận tốc định trước ban đầu và thời gian di chuyển của người đó biết rằng đến B sớm hơn dự định 36 phút
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ô tô đuổi kịp xe máy sau: 27: (54 - 36) = 1,5 (giờ)
2. Ô tô và xe máy gặp nhau sau: 208,5 : (38,6 + 44,8) = 2,5 (giờ)
3. Vận tốc Ô tô: 100 : 2 = 50 (km/giờ)
Vận tốc của xe máy là: 50 x 60% = 30 (km/giờ)
gọi vận tốc bạn đầu là: x (km/h; x>0); thời gian đến B dự định: 36/x
=> vận tốc nửa đường cong lại: x+2
36:2=18 km. đổi: 18'=3/10 h
thời gian đi nửa S đầu: 18/x (h)
thời gian đi nửa S sau: 18/x+2
vì người đó đến B đúng với dự định nên ta có pt:
\(\frac{18}{x}+\frac{18}{x+2}+\frac{3}{10}=\frac{36}{x}\Leftrightarrow\frac{18x+36+18x-36x-72}{x\left(x+2\right)}=-\frac{3}{10}\Leftrightarrow-3x^2-6x+360=0\)
\(\Leftrightarrow x^2+2x-120=0\Leftrightarrow\left(x-10\right)\left(x+12\right)=0\)
=> x=10 (t/m đk) hoặc x=-12 (k t/m đk)
=> vận tốc dđ là: 10 km/h
gọi vận tốc bạn đầu là: x (km/h; x>0); thời gian đến B dự định: 36/x
=> vận tốc nửa đường cong lại: x+2
36:2=18 km. đổi: 18'=3/10 h
thời gian đi nửa S đầu: 18/x (h)
thời gian đi nửa S sau: 18/x+2
vì người đó đến B đúng với dự định nên ta có pt:
\(\frac{18}{x}+\frac{18}{x+2}+\frac{3}{10}=\frac{36}{x}\Leftrightarrow\frac{18x+36+18x-36x-72}{x\left(x+2\right)}=-\frac{3}{10}\Leftrightarrow-3x^2-6x+360=0\)
\(\Leftrightarrow x^2+2x-120=0\Leftrightarrow\left(x-10\right)\left(x+12\right)=0\)
=> x=10 (t/m đk) hoặc x=-12 (k t/m đk)
=> vận tốc dđ là: 10 km/h
Tổng vận tốc của 2 xe là
10 + 30 = 40 (km/giờ)
Thời gian 2 xe gặp nhau là
60 : 40 = 1,5 (giờ) = 1 giờ 30 phút
2 xe gặp nhau lúc
7 giờ 15 phút + 1 giờ 30 phút = 8 giờ 45 phút
Giải:
Quãng đường còn lại người đó phải đi là:
150 \(\times\) (1 - \(\dfrac{1}{5}\)) = 120 (km/h)
Gọi vận tốc dự định là \(x\)(km/h) ; \(x\) > 0
Vận tốc thực tế là: \(x\) + 10 (km/h)
Thời gian người đó đi hết quãng đường còn lại với vận tốc dự định là:
120 : \(x\) = \(\dfrac{120}{x}\) (giờ)
Thời gian người đó đi hết quãng đường còn lại với vận tốc thực tế là:
120 : (\(x\) + 10) = \(\dfrac{120}{x+10}\) (giờ)
Đổi 36 phút = \(\dfrac{3}{5}\) giờ
Theo bài ra ta có phương trình:
\(\dfrac{120}{x}\) - \(\dfrac{120}{x+10}\) = \(\dfrac{3}{5}\)
120.(\(\dfrac{1}{x}\) - \(\dfrac{1}{x+10}\)) = \(\dfrac{3}{5}\)
120. \(\dfrac{x+10-x}{x\left(x+10\right)}\)= \(\dfrac{3}{5}\)
120.\(\dfrac{\left(x-x\right)+10}{x\left(x+10\right)}\) = \(\dfrac{3}{5}\)
\(\dfrac{120.10}{x\left(x+10\right)}\) = \(\dfrac{3}{5}\)
\(x\)(\(x\) + 10) = 120.10 : \(\dfrac{3}{5}\)
\(x\)(\(x+10\)) = 2000
\(x^2\) + 10\(x\) - 2000 = 0
\(\Delta\)' = 52 + 2000 = 2025 > Vậy phương trình có hai nghiệm phân biệt là
\(x_1\) = \(\dfrac{-5+\sqrt{2025}}{1}\) = 40 > 0(tm)
\(x_2\) = \(\dfrac{-5-\sqrt{2025}}{1}\) = - 50 < 0 (loại)
Vậy vận tốc ban đầu của người đó là 40 km/h
Thời gian thực tế người đó đi hết quãng đường AB là:
150 : 40 - \(\dfrac{3}{5}\) = 3,15 (giờ)
3,15 giờ = 3 giờ 9 phút
Kết luận: Vận tốc dự định của người đó là 40 km/h
Thời gian thực tế người đó đi hết quãng đường từ A đến B là 3 giờ 9 phút.
3 giờ 9 phút đug ko ạ?