Tìm số nguyên \(x\)nhỏ nhất thỏa mãn:
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right).\left(x-2013\right)>3x-6039\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)>3x-6039\)
\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-(3x-6039)>0\)
\(\Leftrightarrow \left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right)(x-2013)-3(x-2013)>0\)
\(\Leftrightarrow (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\)
Ta thấy:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}-3\)
\(=\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2013}>0\)
Do đó, để \( (x-2013)\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}-3\right)>0\) thì \(x-2013>0\)
\(\Leftrightarrow x>2013\). Vì $x$ là số nguyên bé nhất nên $x=2014$
\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9.10.....2011}\)
\(=\frac{6}{2011}\)
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)x0=0\)
#)Giải :
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times\left(1+1\times2+1\times2\times3-9\right)\)
\(=\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times\left(1+2+6-9\right)\)
\(=\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\right)\times0\)
\(=0\)
#~Will~be~Pens~#
Bài 1:
a. https://olm.vn/hoi-dap/detail/100987610050.html
b. Giống nhau hoàn toàn => P=Q
Chỉ biết thế thôi
a.N=1-5-9+13+17-21+...+2001-2005-2009+2013+2017
N = ( 1 - 5 - 9 + 13 ) + ( 17 - 21 - 25 + 29 ) + .... + ( 2001 - 2005 - 2009 + 2013 ) + 2017
N = 0 + 0 + ... + 0 + 2017
N = 2017
a)
\(2^x\left(1+2+2^2+2^3\right)=480\)
\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)