Biết a - 2b = 5. tính giá trị biểu thức: \(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a-2b=5 => a=2b+5
Thay a=2b+5 vào B thì :
B = 6b+15-2b/4b+10+5 + 3b-2b-5/b-5
= 4b+15/4b+15 + b-5/b-5 = 1+1 = 2
Tk mk nha
Ta có : a - 2b = 5 \(\Rightarrow\)2b = a - 5
a - 2b = 5 \(\Rightarrow\)a = 2b + 5
Thay vào , ta được :
\(B=\frac{3a-\left(a-5\right)}{2a+5}+\frac{3b-\left(2b+5\right)}{b-5}\)
\(B=\frac{3a-a+5}{2a+5}+\frac{3b-2b-5}{b-5}\)
\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)
\(B=1+1=2\)
Từ a-2b=5 => a = 2b+5
Thay 2b + 5 vào a, ta có biểu thức :
\(\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}=\frac{3.\left(2b+5\right)-2b}{2.\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)
\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b-5}{b-5}=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)
Từ \(a-2b=5\Rightarrow a=5+2b\) thay vào P ta có:
\(P=\frac{3\left(2b+5\right)-2b}{2\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b+5}{b-5}\)
\(=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)
`Answer:`
a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)
Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)
\(E=\frac{3a+2b}{4a-3b}\)
\(=\frac{3k+2.3k}{4k-3.3k}\)
\(=\frac{3k+6k}{4k-9k}\)
\(=\frac{9k}{-5k}\)
\(=-\frac{9}{5}\)
b. Thay `a-b=5` vào biểu thức `F`, ta được:
\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)
\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)
\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)
\(=1+1\)
\(=0\)
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
ta có \(a-b=5\) \(\Rightarrow a=b+5;b=a-5\)
\(\Rightarrow-\frac{4a-b}{3a+5}-\frac{3b-a}{2b-5}\)
\(=-\frac{4a-\left(a-5\right)}{3a+5}-\frac{3b-\left(b+5\right)}{2b-5}\)
\(=-\frac{4a-a+5}{3a+5}-\frac{3b-b-5}{2b-5}\)
\(=-\frac{3a+5}{3a+5}-\frac{2b-5}{2b-5}=-1-1=-2\)
cách khác:
\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)
\(=\frac{3a-2b}{2a+a-2b}+\frac{3b-a}{b-a+2b}\) (thay 5 = a - 2b)
\(=\frac{3a-2b}{3a-2b}+\frac{3b-a}{3b-a}\)
\(=1+1=2\)
Biết a - 2b = 5 tính giá trị biểu thức:
\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)
\(=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{3b-a}{b-5}\)
\(=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)
\(=1+1=2\)
Vậy B = 2