cho x,y>0 thỏa mãn x+y\(\le\)2.Tìm giá trị nhỏ nhất của A=\(x+y+\frac{2}{x}+\frac{2}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{x^2+9y^2}{xy}-\frac{8y^2}{xy}\)
\(\ge\frac{2\sqrt{9x^2y^2}}{xy}-\frac{8.y.y}{xy}\)
\(\ge6-\frac{8.\frac{x}{3}.y}{xy}=6-\frac{8}{3}=\frac{10}{3}\)
Đẳng thức xảy ra khi x = 3y.
Vậy..
\(x\ge3y\Leftrightarrow\frac{x}{y}\ge3\)
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)
\(\text{Đặt}\frac{x}{y}=a\Rightarrow a\ge3,M=a+\frac{1}{a}\)
Dùng điểm rơi a=3
\(M=\frac{8}{9}a+\frac{1}{9}a+\frac{1}{a}\ge\frac{8}{9}a+\frac{2}{3}\ge\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=x^2y^2+\frac{1}{x^2y^2}+2\)
Áp dụng BĐT Cô-si cho 2 số không âm ta có:
\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)
\(\frac{255}{256x^2y^2}\ge\frac{255}{256\cdot\frac{\left(x+y\right)^4}{16}}=\frac{255}{256\cdot\frac{1}{16}}=\frac{255}{16}\)
\(\Rightarrow P\ge\frac{1}{8}+\frac{255}{16}+2\ge\frac{289}{16}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Phải là giá trị nhỏ nhất nha bạn
Áp dụng BĐT Cô-si dạng Engel
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{\left(y+z\right)+\left(z+x\right)+\left(x+y\right)}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\\x+y+z=2\end{cases}}\) \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
áp dụng bất đẳng thức cô si ta có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}=1\)
1/y thành 1/x nhé
H = x2 + 2y2 + 1/x + 24/y
H = ( x2 + 1 ) + 2 ( y2 + 4 ) + 1/x + 24/y
H \(\ge\)2x + 8y + 1/x + 24/y = ( x + 1/x ) + ( 6y + 24y ) x + 2y - 9
\(\ge\)2 + 24 + 5 - 9 = 22
Dấu " = " xảy ra khi x = 1 ; y = 2
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
\(A=x+y+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\frac{1}{x}+\frac{1}{y}\)
Theo bđt cô si : \(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\) và \(y+\frac{1}{y}\ge2\sqrt{y\cdot\frac{1}{y}}=2\)
Theo bđt Bunhiacopxkia dạng phân thức : \(\frac{1}{x}+\frac{1}{y}=\frac{1^2}{x}+\frac{1^2}{y}=\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\ge\frac{4}{2}=2\)
Cộng vế theo vế 3 bđt trên ta có : \(A\ge2+2+2=6\)
Dấu = xảy ra khi : x=y=1
co \(A=2\left(x+\frac{1}{x}\right)+2\left(y+\frac{1}{y}\right)-2\left(x+y\right)..\)
ap dung bdt co- si cho 2 so duong: \(a+b\ge2\sqrt{ab}.\)dau = khi a=b ta co
\(A\ge2.2\sqrt{x.\frac{1}{x}}+2.2\sqrt{y.\frac{1}{y}}-2.2\)
\(\Leftrightarrow A\ge4+4-4=4.\)
dau = xay ra khi a=b=2:1=1.
kl