K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi D là giao của MN vơi AC

OM=ON

AM=AN

=>OA là trung trực cua MN

=>góc OKD=90 độ

góc OID+góc OKD=180 độ

=>OIDK nội tiếp

=>Tâm đường tròn ngoại tiếp ΔOIK nằm trên trung trực của DI

ΔAMB và ΔACM có

góc MAC chung

góc AMB=góc ACM

=>ΔAMB đồng dạng với ΔACM

=>AM^2=AB*AC

ΔAMD đồng dạng với ΔAIM

=>AM^2=AD*AI

=>AB*AC=AD*AI

=>AD=(AB*AC)/AI ko đổi

=>ĐPCM

1 tháng 4 2020

GIẢI PHÁP CỦA CÂU NÀY LÀ GHÕ CHO MẠNG

a: ΔOBC cân tại O có OI là trung tuyến

nên OI vuông góc BC

góc AMO=góc ANO=góc AIO=90 độ

=>A,M,O,I,N cùng thuộc 1 đường tròn

b: Xét (O) có

AM,AN là tiếp tuyến

=>AM=AN

mà OM=ON

nên OA là trung trực của MN

=>OA vuông góc MN tại H

=>AH*AO=AM^2

Xét ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM/AC=AB/AM

=>AM^2=AB*AC=AH*AO