K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

Hình vẽ : 

2 tháng 5 2018

a ) 

Vì ΔABDΔABD là tam giác đều(gt) ⇒DABˆ⇒DAB^=600

ΔACEΔACE là tam giác đều(gt) ⇒EACˆ⇒EAC^=600

⇒DABˆ+BACˆ=EACˆ+BACˆ⇒DAB^+BAC^=EAC^+BAC^

⇒DACˆ=BAEˆ⇒DAC^=BAE^

Xét ΔDACΔDAC và ΔBAEΔBAE có:

DA=BA(vì ΔABDΔABD là tam giác đều)

DACˆ=BAEˆDAC^=BAE^ (cmt)

AC=AE(vì ΔACEΔACE là tam giác đều)

⇒ΔDAC=ΔBAE(c.g.c)

b, Ta có: ^ AEM + ^MEC = 60 độ

mà ^AEM = ACD (Tam giác ABE = tam giác ADC)

=>^MEC + ^MCA = 60 độ

Ta lại có: ^ACE = 60 độ

=>^MCA + ^ACE+ ^MEC = 120 độ

mà ^MCA + ^ACE = ^MCE

=> ^MCE + ^MEC = 120 độ

Ta lại có: ^EMC + ^MCE + ^CEM = 180 độ

mà ^MCE + ^CEM =120 độ (cm trên)

=>^EMC + 120 độ =180 độ

=> ^EMC = 180 độ - 120 độ =60 độ

Ta lại có: ^BMC + ^EMC = 180 độ

mà ^EMC = 60 độ

=> ^BMC + 60 độ =180 độ

=> ^BMC = 180 độ - 60 độ = 120 độ (đpcm)

a:

góc BAE=góc BAC+góc CAE=góc BAC+60 độ

góc CAD=góc CAB+góc BAD=góc BAC+60 độ

=>góc BAE=góc CAD

Xét ΔABE và ΔADC có

AB=AD

góc BAE=góc DAC

AE=AC

=>ΔABE=ΔADC

b: ΔABE=ΔADC

=>góc ABE=góc ADC

=>góc ABM=góc ADM

Xét tứ giác ADBM có

góc ABM=góc ADM

=>ADBM là tứ giác nội tiếp

=>góc DMB=góc DAB=60 độ

góc DMB+góc BMC=180 độ(kề bù)

=>góc BMC=180-60=120 độ

9 tháng 1 2021
thích các bước giải: a, Xét tam giác ABE và tam giác ADC có: AB = AD góc BAE = góc DAC AE=AC ==> tam giacs ABE = tam giác ADC ( c.g.c )
20 tháng 2 2017

ta có DAC=60+BAC                                                                                                              b,  BMC=MCE+MEC

       BAE=60+BAC                                                                                  MCE+MEC=ACE+MCA+MEC=BMC

       =>DAC=BAC                                                                                  MÀ ACE=AEB

SAU ĐÓ XÉT TAM GIÁC                                                                 => BMC = ACE+AEB+MEC=60+60=120

3 tháng 2 2018

toán lớp 7 hả năm sau anh /chị nhóe

30 tháng 7 2017

Chủ thớt chuẩn bị dĩa với dụng cụ đi :v 

a) Xét \(\Delta ABD\) đều 

=> \(\widehat{DAB}=\widehat{ABD}=\widehat{BDA}=60^0\)

Xét \(\Delta ACE\)

=> \(\widehat{CAE}=\widehat{ECA}=\widehat{AEC}=60^0\)

Có : \(\widehat{BAC}+\widehat{DAB}=\widehat{BAC}+\widehat{CAE}\) \(\left(\widehat{CAE}=\widehat{DAB}=60^0\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)

Xét \(\Delta ACD\) và \(\Delta AEB\) có :

\(\widehat{DAC}=\widehat{EAB}\)

\(AC=AE\) (\(\Delta ACE\) đều)

\(AB=AD\) (\(\Delta ABD\) đều)

=> \(\Delta ACD\)\(\Delta AEB\) (cạnh - góc - cạnh)

b) Gọi giao điểm của AC và BE là W  (chỗ này thì thích gì gọi đó :)) 
Ta có :

\(\Delta ACD\) = \(\Delta AEB\)

=> \(\widehat{AEB}=\widehat{ACD}\)

Lại có : \(\widehat{AWE}=\widehat{MWC}\)

Theo tổng 3 góc trong tam giác có :

\(\widehat{EAW}+\widehat{AEW}+\widehat{AWE\:}=60^0+\widehat{AEW}+\widehat{AWE}\) (tam giác AEW)

\(\widehat{CMW}+\widehat{MCW}+\widehat{MWC\: }=60^0+\widehat{MCW}+\widehat{MWC}\) (tam giác MWC)

=> 

30 tháng 7 2017

Làm tiếp :

=> \(\widehat{EAW}=\widehat{CMW}=60^0\)

Mà \(\widehat{CMW}+\widehat{CMB}=180^0\)

=> \(\widehat{CMB}=120^0\)