Tìm P là số tự nhiên để P + 2 và P + 10 nguyên tố cùng nhau( ko phải là đều là số nguyên tố đâu)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
https://olm.vn/hoi-dap/tim-kiem?id=883660&subject=1&q=Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng+hai+s%E1%BB%91+2n+1+v%C3%A0+6n+5+nguy%C3%AAn+t%E1%BB%91+c%C3%B9ng+nhau+v%E1%BB%9Bi+m%E1%BB%8Di+s%E1%BB%91+t%E1%BB%B1+nhi%C3%AAn+n+
Nếu k=0 thì 13.k=13.0=0 không là số nguyên tố
Nếu k=1 thì 13.k=13.1=1 là số nguyên tố
Nếu k >1 thì 13.k chia hết cho k => 13.k không là số nguyên tố
Vậy k chỉ có thể là 1.
Gọi d = ƯCLN(9x + 4; 2x - 11) (d ϵ N*)
\(\Rightarrow\begin{cases}9x+4⋮d\\2x-11⋮d\end{cases}\)\(\Rightarrow\begin{cases}2.\left(9x+4\right)⋮d\\9.\left(2x-11\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}18x+8⋮d\\18x-99⋮d\end{cases}\)
\(\Rightarrow\left(18x+8\right)-\left(18x-99\right)⋮d\)
\(\Rightarrow18x+8-18x+99⋮d\)
\(\Rightarrow107⋮d\)
Mà \(d\ne1\) do 9x + 4 và 2x - 11 không phải 2 số nguyên tố cùng nhau => d = 107
=> ƯCLN(9x + 4; 2x - 11) = 107
=> ƯC(9x + 4; 2x - 11) = Ư(107) = {1 ; -1 ; 107 ; -107}
Bài làm:
Với p = 3
=> p + 2 = 3 + 2 = 5 ( là số nguyên tố )
p + 10 = 3 + 10 = 13 ( là số nguyên tố )
Với p > 3 => p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k+1 ) chia hết cho 3 ( là hợp số trái với GT )
Với p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) chia hết cho 3 ( là hợp số trái với GT )
Vậy p = 3
BÀI LÀM
Với p = 3
\(\Rightarrow\) p + 2 = 3 + 2 = 5 ( là số nguyên tố )
p + 10 = 3 + 10 = 13 ( là số nguyên tố )
Với p > 3 => p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1
\(\Rightarrow\) p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k+1 ) chia hết cho 3 ( là hợp số trái với giả thiết )
Với p = 3k + 2
\(\Rightarrow\) p + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) chia hết cho 3 ( là hợp số trái với giả thiết )
Vậy p = 3