Cho đa thức P(x)=\(a^2+bx+c\) và 2a+b = 0
Chứng tỏ P(-1) và P(3)\(\ge0\)
Nhớ ghi rõ lời giải nha , mk cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s : Easy mà bạn :
Ta có :
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-\left(a-b+c\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4.0=0\)
\(\Rightarrow P\left(3\right)=P\left(-1\right)\)
\(\Rightarrow\)
\(P\left(3\right).P\left(-1\right)=P\left(3\right).P\left(3\right)=\left[P\left(3\right)\right]^2\ge0\)
\(\left(Đcpm\right)\)
Ta có :
(393 + 390) : (317 . 373)
= (393 + 390) : 390
= 393 : 390 + 390 : 390
= 33 + 1
= 27 + 1 = 28
Ủng hộ mk nha !!! ^_^
Có: \(M\left(0\right)=a.0^2+b.0+c=c=0\)
\(M\left(1\right)=a.1^2+b.1+c=a+b+c=0\)
\(M\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=0\)
\(M\left(1\right)-M\left(-1\right)=a+b+c-\left(a-b+c\right)\)
\(=a+b+c-a+b-c=2b=0\)
=> \(b=0\)
=> \(a+b+c=a+0+0=a=0\)
Vậy \(a=b=c=0\)
Mk lm giúp câu a , các câu cn lại tương tự nha bn
\(A=ax^3+bx^2-3x-2\)
\(B=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
Gọi C là thương của phép chia A cho B
=> A = B.C
Đa thức A có bậc 3 chia cho đa thức B có bậc 2 sẽ được thương có bậc 1
=> C có dạng \(cx+d\)
=> \(ax^{3\:}+bx^2-3x-2=\left(x^2+x-2\right)\left(cx+d\right)\)
\(\Rightarrow ax^{3\:}+bx^2-3x-2=cx^3+dx^2+cx^2+dx-2cx-2d\)
\(\Rightarrow ax^{3\:}+bx^2-3x-2=cx^3+\left(d+c\right)x^2+\left(d-2c\right)x-2d\)
\(\Rightarrow\left\{{}\begin{matrix}ax^{3\: }=cx^3\\bx^2=\left(d+c\right)x^2\\-3x=\left(d-2c\right)x\\-2=-2d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c\\d+c=b\\d-2c=-3\\d=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=c\\d+c=b\\1-2c=-3\\d=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c\\c+d=b\\c=2\\d=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2+1=3\\c=2\\d=1\end{matrix}\right.\)
Vậy \(A=2x^3+3x^2-3x-2\)
Hình như bạn chép sai đề bài : Thừa 13a+b+2c à b =.= Nếu thừa thì bạn thay vô và tính bình thường là được =.=