Cho tam giác ABC cân tại A và 2 đường trung tuyến BM, CN cắt nhau tại K. CMR:
a. tam giác BNC = tam giác CMB.
b. tam giác BKC cân tại K.
c. BC bé hơn 4 lần KM
Mong các bạn giải giúp mình!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta xét \(\Delta BCNvà\Delta CMB\)
có BC chung
góc B = góc C ( Hai góc ở đáy của tam giác cân)
BN = CM ( BN=\(\frac{1}{2}AB=\frac{1}{2}AC=CM\)
Suy ra tam giác BCN = tam giác CMB ( C-G-C)
b. Ta có tam giác BCN = tam giác CMB
suy ra góc BCN = góc CBM ( hai góc tương ứng)
tam giác BKC có góc KBC= góc KCB nên tam giác BKC cân tại K
c. Xét \(\Delta BKC\)
có BC< KB + KC ( BĐT tam giác) (1)
mà BK = 2.KM, CK = 2.KN mà BK= CK, KM =KN (2)
từ (1) và (2) suy ra BC < KB +KC =4.KM
Vậy BC < 4.KM
a) Ta có: ΔABC cân tại A
Nên: AB=AC
Mà: CN là đường trung tuyến => NB=NA
BM là đường trung tuyến => MA=MC
Suy ra: NB=NA=MA=MC
Xét ΔBNC và ΔCMB
Có: BN=CM (cmt)
\(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)
BC chung
Suy ra: ΔBNC=ΔCMB (c-g-c)
Bạn tự vẽ hình nha!
a.
BN = AN = AB/2 (CN là đường trung tuyến của tam giác ABC => N là trung điểm của AB)
CM = AM = AC/2 (BM là đường trung tuyến của tam giác ABC => M là trung điểm của AC)
mà AC = AB (tam giác ABC cân tại A)
=> BN = CM
Xét tam giác BNC và tam giác CMB có:
BN = CM (chứng minh trên)
ABC = ACB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
b.
Tam giác BNC = Tam giác CMB (theo câu a)
=> KBC = KCB (2 góc tương ứng)
=> Tam giác KBC cân tại K
c.
Tam giác KBC cân tại K
=> BK = CK
=> BK + CK = 2BK = 4KM
mà BK + CK > BC (bất đẳng thức tam giác)
=> BC < 4KM
a,Vì CN và BM lần lượt là đường trung tuyến của góc B và C nên N và M lần lượt là trung điểm của AB và AC
\(\Rightarrow\) AN=BN=AB/2 và AM=MC=AC/2 mà AB=AC(tam giác ABC cân tại A)nên suy ra NB=MC
Xét tam giác BNC và tam giác CMB có: NB=MC(cmt);góc ABC= góc ACB(do tam giác ABC cân);cạnh BC chung
\(\Rightarrow\)tam giác BNC=tam giác CMB
C) MN // BC
o l m . v n
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
bạn tự vẽ hình nhé
a)Ta có: AB=AC (tam giác ABC cân tại A)
mà BN=AB/2 (dường trung tuyến CN)
và CM=AC/2 (đường trung tuyến BM)
=>BN=CM
Xét tam giác BNC và tam giác CMB, có:
BC chung
BN=CM (cmt)
góc NBC=góc MCB (tam giác ABC cân tại A)
=> tam giác BNC=tam giác CMB (c.g.c)
b)Ta có: góc NCB=góc MBC (tam giác BNC= tam giác CMB)
=> tam giác KBC cân tại K
c)Xét tam giác ABC có
N là trung điểm của AB (đường trung tuyến CN)
và M là trung diểm của AC (đường trung tuyến BM)
=>NM là đường trung bình của tam giác ABC
=>NM=BC/2
mà NM<NK+KM ( bất đẳng thức cạnh trong tam giác)
=>BC/2<NK+KM
mà NK=CN-CK
=> BC/2<CN-CK+KM
mà CN=BM (tam giác BNC = tam giác CMB)
và CK=BK (tam giác KBC cân tại K)
=>BC/2<BM-BK+KM
=>BC/2<2KM
=>BC<4KM
a) vì tam giác ABC cân tại A
nên AB=AC; \(\widehat{B}=\widehat{C}\)
mà CN và BM là đường trung tuyến
=>BM=NC
=>AN=BN ; AM=CM
Xét \(\Delta BNC\)và \(\Delta CMB\)
có: BC là cạnh chung
BN=CM (gt)
BM=NC (gt)
do đó: \(\Delta BNC=\Delta CMB\)
giải:
a,Xét tam giác BCN và tam giác CBM có
cạnh BC chung, Góc B=góc C(vì Tam giác ABC cân tại A),BN=CN(Vì \(BN=\frac{1}{2}AB=\frac{1}{2}AC=CM\))
=>tam giác BCN=tam giác CBM(c.g.c)
b,ta có :tam giác BCN=tam giác CBM(cm1)
=>góc B1=góc C1( 2 góc tương ứng)
=>tam giác BKC cân tại K
c,Xét tam giác BKC có:
BC<KB+KC (bất đẳng thức tam giác) (1)
mà BK=2KM, CK=2KN, Mà BK=CK, KM=KN (2)
Từ (1) và (2)=>BC<KB+KC=4KM
Vậy BC<4KM (đpcm)