Cho tam giác ABC vuông tại A , có AB = 16cm , AC = 30cm . Tính tổng các khoảng cách từ trọng tâm G của tgiác đến các đỉnh
Giúp mình nha =))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ sắp phải đi học
\(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+30^2}=34\left(cm\right)\)
Ta có \(\Delta ABC\perp A\)( gt )
\(MC=\sqrt{AC^2+AM^2}=\sqrt{30^2+8^2}=2\sqrt{241}\left(cm\right)\)
\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)
\(BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+15^2}=\sqrt{481}\)
Khoảng cách từ G đến các đỉnh bằng 2/3 khoảng cách đường trung tuyến
\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{16^2+30^2}\)
\(BC=34\left(cm\right)\)
Ta có: Tam giác ABC vuông tại A
\(MC=\sqrt{AC^2+AM^2}\)
\(MC=\sqrt{30^2+8^2}\)
\(MC=2\sqrt{241}\left(cm\right)\)
\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)
\(BD=\sqrt{AB^2+AD^2}\)
\(BD=\sqrt{16^2+15^2}=\sqrt{481}\left(cm\right)\)
Khoảng cách từ trọng tâm G của tam giác là: 2/3