tìm số tự nhiên n thỏa mãn:
a)5(2-3n)+42+3n>=0
b)(n+1)2 (n+2)(n+2)<=1.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 10-15n+42+3n \(\ge\) 0
<=> 12n \(\le\) 52 => n \(\le\)52:12=4,333
=> n={1; 2; 3; 4}
3n+8 chia hết cho n+2
=>3(n+2)+2 chia hết cho n+2
=>n+2 thuộc Ư(2)={1;2}
+/n+2=1=>n=-1
+/n+2=2=>n=0
vì n thuộc N
nên n=0
câu 2:
3n+5 chia hết cho n
=>5 chia hết cho n
=>n thuộc U(5)={1;5}
vì n khác 1 nên n=5
\(\left\{{}\begin{matrix}4\left(n+1\right)+3n-6< 19\\\left(n-3\right)^2-\left(n+2\right)\left(n-2\right)< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+4+3n-6< 19\\n^2-6n+9-n^2+4< =\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7n< 21\\-6n+13< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n< 3\\-6n< =-\dfrac{23}{2}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{23}{12}< n< 3\)
mà n là số tự nhiên
nên n=2
Bài 2: (1) <=> \(4\left(n+1\right)+3n-6< 19\)
<=> \(4n+4+3n-6< 19\)
<=> \(7n-2< 19\)
<=> \(7n< 21\) <=> \(n< 3\) (*)
(2) <=> \(\left(n-3\right)^2-\left(n+4\right)\left(n-4\right)\le43\)
<=> \(n^2-6n+9-n^2+16\le43\)
<=> \(-6n+25\le43\) <=> \(-6n\le18\Leftrightarrow n\le-3\) (**)
Từ (*) và (**) => \(n\le3\) thì mới tìm được mà thỏa mãn 2 phương trình đã cho. Nhưng đề yêu cầu tìm n \(\in\) N nên k có n thỏa mãn
a) <=> 4n+4+3n-6 <19 <=> 7n<21 <=> n<3 (1)
b) <=> n^2 - 6n + 9 - n^2 +16 \(\le\)43
\(\Leftrightarrow\)-6n \(\le\)18 <=> n > 3 (2)
Từ 1 và 2 => n=\(\Phi\)
Ta có: m<n
\(\Leftrightarrow m\times\dfrac{1}{2}< n\times\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{m}{2}< \dfrac{n}{2}\)\(\Leftrightarrow\dfrac{m}{2}+\left(-5\right)=\dfrac{n}{2}+\left(-5\right)\)\(\Leftrightarrow\dfrac{m}{2}-5< \dfrac{n}{2}-5\)
a, \(5\left(2-3n\right)+42+3n\ge0\)
\(\Leftrightarrow10-15n+42+3n\ge0\)
\(\Leftrightarrow52-12n\ge0\Leftrightarrow52\ge12n\Leftrightarrow12n\le52\Leftrightarrow n\le\dfrac{13}{3}\)
Vậy bất phương trình có nghiệm \(n\le\dfrac{13}{3}\)
b, \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)
\(\Leftrightarrow n^2+2n+1-\left(n^2-4\right)\le1,5\)
\(\Leftrightarrow n^2+2n+1-n^2+4\le1,5\)
\(\Leftrightarrow2n+5\le1,5\)\(\Leftrightarrow2n\le-3,5\)\(\Leftrightarrow n\le-1,75\)
Vậy bất phương trình có nghiệm \(n\le-1,75\)
\(5\left(2-3n\right)+42+3n\ge0\)
\(\Leftrightarrow\)\(10-15n+42+3n\ge0\)
\(\Leftrightarrow\)\(52-12n\ge0\)
\(\Leftrightarrow\)\(12n\le52\)
\(\Leftrightarrow\)\(n\le\frac{13}{3}\)
Vì \(n\in N\) nên \(n=\left\{0;1;2;3;4\right\}\)