Cho hình thang cân ABCD có AB//CD, AB = 2cm, CD = 6cm, AD = BC = 3cm. Tính
diện tích hình thang ABCD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Những câu hỏi liên quan
29 tháng 8 2021
Kéo dài AD và BC, chúng cắt nhau tại M, dựng đường cao DH.
⇒ tam giác ABM đều.⇒AB=AM=4,5⇒DC=AM-AD=4,5-2=2,5Xét tam giác ADH vuông tại D có ADH=30AH=1/2AD=1/2.2=1Mặt khác ta có:DH²=AD²-AH²(theo định lý PITAGO)⇒DH²=4-1=3⇒DH=√3⇒Sabcd=(DC+AB).DH/2=(2,5+4,5).√3/2=7√3/2
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
cảm ơn cậu