K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

a) VÌ BE vuông góc với BD (gt) => BE là đường cao tam giác BAK 

   Vì BD phân giác (gt) => BE cũng là phân amgiác tam giác BAK

=> tam giác ABK là tam giác cân (Đ/lý)

23 tháng 4 2018

đểmình có động lực làm câu b) :)))

7 tháng 5 2017

bài này à ko bít kamf khai đi học trường nào tỉ tỉ giảng bài cho

7 tháng 5 2017

muốn chơi trò giấu mặt à nhok

15 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

        \(BC^2\)=\(AB^2+AC^2\)

=> \(BC^2\)=36+64=100 cm

=>BC=10 cm

vậy BC=10 cm

b,xét 2 t.giác vuông ABE VÀ KBE có:

             EB cạnh chung

            \(\widehat{ABE}\)=\(\widehat{KBE}\)(gt)

=>t.giác ABE=t.giác KBE(cạnh góc vuông-góc nhọn)

=>AB=KB

=>t.giác ABK cân tại B

c, xét t.giác ABD và t.giác KBD có:

            AB=KB(vì t.giác ABK cân)

           \(\widehat{ABD}\)=\(\widehat{KBD}\)(gt)

           DB cạnh chung

=>t.giác ABD=t.giác KBD(c.g.c)

=>\(\widehat{DAB}\)=\(\widehat{DKB}\)mà \(\widehat{DAB}\)=90 độ nên suy ra \(\widehat{DKB}\)=90 độ

=>DK\(\perp\)BC

15 tháng 4 2019

A B C D H E K 6cm 8 cm

18 tháng 7 2015

b ) Xét tam giác ABD và tam giác KBD , có

BD cạnh chung

góc ABD = góc KBD ( gt )

BA = BK ( tam giác ABK cân tại B )

suy ra tam giác ABD = tam giác KBD ( c.g.c)

suy ra góc BAD = góc BKD ( 2 góc tương ứng)

mà góc BAD = 90 độ

suy ra BKD = 90 độ

nên DK vuông góc BC

19 tháng 7 2015

a) Tam giác ABK có BE vừa là đường cao vừa là phân giác nên tam giác ABK cân tại B

=> BE là đường trung trực của đoạn thẳng AK.

hay A và K đối xứng nhau qua BD.

b) Xét tam giác ABD và KBD có 

    AB=KB(tam giác ABK cân tại B)

Góc ABD=KBD(gt)

BD cạnh chung .

Vậy tam giác ABD và KBD bằng nhau theo trường hợp (c.g.c).

=> Góc DKB=DAB=90 độ(hai góc tương ứng)

hay DK vuông góc với BC.

c)Ta có:  góc: HAK+HKA=90 độ ( cùng phụ với góc H trong tam giác AHK).

       và góc: KAC+BAK= góc A= 90 độ

mà góc BAK= HKA( tam giác ABK cân tại B).

từ 3 điều này suy ra góc HAK=KAC hay AK là tia phân giác góc HAC.

d) Tam giác ABK có AH, BE là các đường cao giao nhau tại I nên I là trực tâm.

=> KI cũng là đường cao

Hay KI vuông góc với AB.

mà AC vuông góc với AB( do tam giác ABC vuông tại A)

TỪ hai điều này suy ra IK//AC

Tứ giác IKCA có IK//AC nên IKCA là hình thang.

16 tháng 12 2023

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

16 tháng 12 2023

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng