K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác NKHP có góc NKP=góc NHP=90 đọ

nên NKHP là tứ giác nội tiếp

9 tháng 4 2021

undefined

7 tháng 5 2019

a) Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)

=> AEHF là tứ giác nt

b) Xét tứ giác BCEF có 2 góc \(\widehat{BFC}\)và \(\widehat{CEB}\)cùng nhìn đoạn BC một góc 90o

=> BCEF là tứ giác nt

=> \(\widehat{KBF}=\widehat{KEC}\)(cùng bù với \(\widehat{FBC}\))

Xét \(\Delta KBF\)và \(\Delta KEC\)

 \(\widehat{KBF}=\widehat{KEC}\)

\(\widehat{CKE}\)chung

=> \(\Delta KBF\)ᔕ \(\Delta KEC\)(g-g)

=> \(\frac{KB}{KE}=\frac{KF}{KC}\)

=> KB . KC = KE . KF (1)

c) Nối M với B

Xét (O) có tứ giác AMBC nội tiếp đường tròn đó

=> \(\widehat{KBM}=\widehat{KAB}\)

Xét \(\Delta KBM\)và \(\Delta KAC\)

\(\widehat{KBM}=\widehat{KAC}\)

\(\widehat{AKC}\)chung

=> \(\Delta KBM\)ᔕ \(\Delta KAC\)(g.g)

=> \(\frac{KB}{KA}=\frac{KM}{KC}\)=> KB . KC = KA . KM (2)

Từ (1) (2) => KE . KF = KA . KM

=> \(\frac{KF}{KA}=\frac{KM}{KE}\)

Xét \(\Delta KFMvà\Delta KAE\)có 

\(\widehat{AFE}\)chung

\(\frac{KF}{KA}=\frac{KM}{KE}\)

=> \(\Delta KFM\)ᔕ \(\Delta KAE\)(g-g)  <=>  \(\widehat{KMF}=\widehat{KEA}\)hay \(\widehat{KMF}=\widehat{FEA}\)

Xét tứ giác AMFE có \(\widehat{KMF}=\widehat{FEA}\)=> AMFE là tứ giác nội tiếp

=> A, M, F ,E cùng thuộc một đường tròn 

Mà A, F, H,E cùng thuộc một đường tròn (AFHE là tgnt)

=> A,F,M,H,E cùng thuộc một đường tròn

=> AMHE là tứ giác nt 

=> \(\widehat{AMH}+\widehat{AEH}=180^o\)=> \(\widehat{AMH}=180^o-\widehat{AEH}=180^o-90^o=90^o\)

=> \(MH\perp AK\)

PHẦN D NGHĨ SAU NHÉ

 
7 tháng 5 2019

d) À mik có ghi thiếu. Câu d c/m: MH cố định khi A di chuyển trên cung lớn BC

26 tháng 5 2017

BAC là tam giác nhọn, DOC là vuông, bằng nhau = cách nào?

26 tháng 5 2017

bạn cố gắng là bạn làm được

23 tháng 4 2021

A B C N M E D H I O 1 1 1

1. Do BD , CE là đường cao của tam giác ABC nên \(\widehat{BDC}=90^o\)và \(\widehat{BEC}=90^o\)

Vì E , D nằm cùng 1 phía trên nửa mặt phẳng có bờ là đường thẳng BC nên tứ giác BCDE nội tiếp trong đường trong đường kính BC

2. Trên cung tròn đường kính BC ta có : \(\widehat{D_1}=\widehat{C_1}\)( cùng chắc cung \(\widebat{BE}\))

Trên đường tròn (O) , ta có : \(\widehat{M_1}=\widehat{C_1}\)( cùng chắn cung \(\widebat{BN}\))

Suy ra : \(\widehat{D_1}=\widehat{M_1}\Rightarrow MN//DE\)( do có 2 góc đồng vị bằng nhau )

3. Gọi H là trực tâm của tam giác ABC và I là trung điểm của BC.

Xét tứ giác ADHE có \(\widehat{AEH}=90^o\)( do CE vuông AB )

                                 \(\widehat{ADH}=90^o\)( do BD vuông AC )

\(\Rightarrow\widehat{AEH}+\widehat{ADH}=180^O\)nên tứ giác ADHE nội tiếp đường tròn đường kính AH

Vậy đường tròn ngoại tiếp tam giác ADE là đường tròn đường kính AH , có bán kính bằng \(\frac{AH}{2}\)

Kẻ đường kính AK của đường tròn (O) , ta có : 

\(\widehat{KBA}=90^o\)( góc nội tiếp chắn nửa đường tròn (O) )

\(\Rightarrow KB\perp AB\)

mà \(CE\perp AB\left(gt\right)\)nên KB // CH (1)

Chứng minh tương tự ta có KC // BH (2)

Từ (1) và (2) => BKCH là hình bình hành

Vì I là trung điểm của BC suy ra I cũng là trung điểm của KH . Mặt khác ta có O là trung điểm của AK nên \(OI=\frac{AH}{2}\). Do BC cố định nên I cố định suy ra Oi không đổi

Vậy khi điểm A di động trên cung lớn BC thì độ dài bán kính đường tròn ngoại tiếp tam giác ADE luôn không đổi 

Do tứ giác BCDE nội tiếp nên \(\widehat{ADE}=\widehat{ABC}\)( tính chất góc ngoài bằng góc trong đối diện ) (3)

Xét 2 tam giác ADE và ABC ta có \(\widehat{DAE}=\widehat{BAC}\), kết hợp với (3) ta có 2 tam giác này đồng dạng 

\(\Rightarrow\frac{S_{\Delta ADE}}{S_{\Delta ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\cos\widehat{DAB}\right)^2=\left(\cos\widehat{CAB}\right)^2\)

Do BC cố định nên cung nhỏ BC không đổi suy ra số đô góc CAB không đổi . Vậy để SADE đạt giá trị lớn nhất thì SABC cũng phải đạt giá trị lớn nhất . Điều này xảy ra khi và chỉ khi A là điểm chính giữa cung lớn BC

28 tháng 2 2019

Tính diện tích OEO'B theo R