Giúp mk với mk gấp quá
Cho pt x^2 -2mx - 4m-5=0
a) tính tổng và tích của hai nghiệm theo m
b) gọi x1, x2 là 2nghiệm của pt. Tìm m để pt có gai nghiệm thỏa mãn x1^2 + x2^2 - x1x2 = 2x1+2x2 +27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2 - 2 ( m + 2 ) x + m^2 + 7 = 0` `(1)`
`a)` Thay `m = 1` vào `(1)`. Ta có:
`x^2 - 2 ( 1 + 2 ) x + 1^2 + 7 = 0`
`<=> x^2 - 6x + 8 = 0`
Ptr có: `\Delta' = b'^2 - ac = (-3)^2 - 8 = 1 > 0`
`=>` Ptr có `2` `n_o` pb
`x_1 = [ -b' + \sqrt{\Delta'} ] / a = [ -(-3) + \sqrt{1} ] / 1 = 4`
`x_2 = [ -b' - \sqrt{\Delta'} ] / a = [ -(-3) - \sqrt{1} ] / 1 = 2`
Vậy với `m = 1` thì `S = { 2 ; 4 }`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)` Ptr `(1)` có nghiệm `<=> \Delta' >= 0`
`<=> b'^2 - ac >= 0`
`<=> [ - ( m + 2 ) ]^2 - ( m^2 + 7 ) >= 0`
`<=> m^2 + 4m + 4 - m^2 - 7 >= 0`
`<=> 4m - 3 >= 0`
`<=> m >= 3 / 4`
Với `m >= 3 / 4`, áp dụng Vi-ét: `{(x_1 + x_2 = [-b] / a = 2m +4),(x_1 . x_2 = c / a = m^2 + 7):}`
Ta có: `-2x_1 + x_1 . x_2 - 2x_2 = 4`
`<=>x_1 . x_2 - 2 ( x_1 + x_2 ) = 4`
`<=> m^2 + 7 - 2 ( 2m +4 ) = 4`
`<=>m^2 + 7 - 4m - 8 - 4 = 0`
`<=> m^2 - 4m -5 = 0`
Ptr có: `\Delta' = b'^2 - ac = (-2)^2 - (-5) = 9 > 0`
`=>` Ptr có `2` `n_o` pb
`m_1 = [ -b' + \sqrt{\Delta'} ] / a = -(-2) + \sqrt{9} = 5` (t/m)
`m_2 = [ -b' - \sqrt{\Delta'} ] / a = -(-2) - \sqrt{3} = -1` (ko t/m)
Vậy `m = 5` thì ptr có `2` nghiệm t/m yêu cầu đề bài
\(∘Angel\)
\(a)\) Thay \(m=1\) vào \((1)\) cta có :
\(x^2− 2 ( 1 + 2 ) x + 1 ^2 + 7 = 0\)
\(x ^2 − 6 x + 8 = 0\)
Pt có : \(Δ ' = b ' ^2 − a c = ( − 3 ) ^2 − 8 = 1 > 0\)
Pt có 2 \(n\)\(o\) pb
\(x1=\dfrac{b'+\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)+\sqrt{1}}{1}=4\)
\(x2=\dfrac{-b'-\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)-\sqrt{1}}{1}=2\)
\(m=1\) thì \(S=\)\(\left\{2;4\right\}\)
a) Thay m=-2 vào phương trình, ta được:
\(x^2+4x+3=0\)
a=1; b=4; c=3
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)
a) \(\Delta\)' = \(m^2-m^2+4=4>0\forall m\)
\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)
b) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1-x_2=0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x_1=2m\\x_1+x_2=2m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\\dfrac{2m}{3}+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\x_2=\dfrac{4m}{3}\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\dfrac{8m^2}{9}=m^2-4\)
\(\Leftrightarrow\) \(8m^2=9m^2-36\) \(\Leftrightarrow\) \(m^2=36\) \(\Leftrightarrow\) \(m=\pm6\)
vậy \(m=\pm6\) thỏa mảng đk bài toán
c) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\3x_1+2x_2=7\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x_1+2x_2=4m\\3x_1+2x_2=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\7-4m+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\x_2=6m-7\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\left(7-4m\right)\left(6m-7\right)=m^2-4\)
\(\Leftrightarrow\) \(42m-49-24m^2+28m=m^2-4\)
\(\Leftrightarrow\) \(25m^2-70m+45=0\)
\(\Leftrightarrow\) \(5m^2-14m+9=0\)
giải phương trình ta có : \(\left\{{}\begin{matrix}x=\dfrac{9}{5}\\x=1\end{matrix}\right.\)
vậy : \(x=\dfrac{9}{5};x=1\) thỏa mãng đk bài toán
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
Thay m=-1 vào pt ta được:
\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)
Vậy...