Tìm giá trị của x và y để :
S=|x+2|+|2.y-10|+2012 đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .
Vì |x-y| ≥0 với mọi x,y;|x+1|≥0 vs mọi x=>A≥2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:{
|x−y|=0 |
|x+1|=0 |
⇔{
x−y=0 |
x+1=0 |
⇔{
x=y |
x=−1 |
vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016
\(S=\left|x+2\right|+\left|2y-10\right|+2016\)
\(S\ge2016\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
Ta có:
\(\left|x-2\right|\ge0;\left|2y-10\right|\ge0\Rightarrow\left|x-2\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|2y-10\right|+2015\ge2015\)
Đẳng thức xảy ra tại x=2;y=5
Vậy \(S_{min}=2015\Leftrightarrow x=2;y=5\)
\(S=\left|x+2\right|+\left|2y-10\right|+2015\) ( x với 2 không biết dấu gì nên đặt tạm , k bác Huy lại bảo copy ==' )
Ta có : \(\hept{\begin{cases}\left|x+2\right|\ge0\forall x\\\left|2x-10\right|\ge0\forall y\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|+2015\ge2015\forall x,y}\)
Dấu = xảy ra <=> | x + 2 | = 0 và | 2y - 10 | = 0
<=> x + 2 = 0 và 2y - 10 = 0
<=> x = -2 và y = 5
Vậy Smin = 2015 khi x = -2 ; y = 5
a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy SMin = 2014 tại x = -2 và y = 5
b, Đặt A = |x + 6| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:
\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)
Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)
Vậy AMin = 13 tại \(-6\le x\le7\)
Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất
=> | x+2 | = 0 => x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5
Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất
\(\left(\frac{3}{4}x-5\right)^2=\frac{9}{49}\)
=>\(\left(\frac{3}{4}x-5\right)^2=\left(\frac{3}{7}\right)^2\)
=>\(\frac{3}{4}x-5=\frac{3}{7};\frac{3}{4}x-5=-\frac{3}{7}\)
=>x=\(\frac{152}{21}\);x=\(\frac{128}{21}\)
b)Vì Ix+2I và I2y-10I luôn lớn hơn hoặc bằng 0
=>Để S đạt giá trị nhỏ nhât thì Ix+2I=0 và I2y-10I=0
=>x=-2;y=5
Vậy giá trị nhỏ nhất của S là:
0+0+2011=2011
KL:Với x=-2;y=5 thì S đạt giá trị nhỏ nhất =2011
Mk làm như thế này có đúng không ta?
Do \(\left|x-19\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x-19\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\left|x-19\right|+\left|2y-10\right|+2019\ge0+2019=2019\)
Dấu " = " xảy ra :
\(\hept{\begin{cases}x-19=0\\2y-10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=19\\y=5\end{cases}}\)
Do đó : x = 19 , y = 5
Thay x = 19 , y = 5 ta có :
\(\left|19-19\right|+\left|2\cdot5-10\right|+2019\)
\(=0+0+2019=2019\)
Vậy giá trị nhỏ nhất của S là 2019
Mk thi chưa làm xong GTNN =_=" , ko bt bao nhiêu điểm Toán nữa
Do |x+2| > hoặc =0
|2y-10| > hoặc =0
=>|x+2|+|2y-10| > hoặc =0
=>___________+2012 > hoặc=0+2012=2012
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\)=>\(\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}=>\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right):2=5\end{cases}}\)
Vậy x=-2;y=5 <=> S=2012
\(\text{Bài giải}\)
\(\text{Ta có : }S=\left|x+2\right|+\left|2y-10\right|+2012\)
\(\text{Do }\left|x+2\right|\ge0\)
\(\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|\ge0\)
\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|+2012\ge0+2012=2012\)
\(\text{Dấu "}=\text{" xảy ra khi :}\)
\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right)\text{ : }2=5\end{cases}}\)
\(\text{Thay }x=-2\text{ , }y=5\text{ ta có : }\)
\(S=\left|-2+2\right|+\left|2\cdot5-10\right|+2012\)
\(S=0+\left|10-10\right|+2012\)
\(S=0+0+2012\)
\(S=2012\)
\(\text{Vậy }GTNN\text{ của }S=2012\text{ khi }x=-2\text{ và }y=5\)