K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

cần ít nhất là 4 màu nha

chúc bạn học tốt

13 tháng 8 2018

Tất cả các đỉnh A, B, C, D, E đều nối với đỉnh F nên đỉnh F phải tô màu khác với các đỉnh còn lại. Với 5 đỉnh còn lại thì A và C tô cùng một màu. B và D tô cùng một màu, E tô riêng một màu, như vậy cần ít nhất 3 màu để tô 5 đỉnh sao cho 2 đỉnh được nối bởi một cạnh được tô bởi 2 màu khác nhau. Vậy cần ít nhất 4 màu để tô 6 đỉnh của hình theo yêu cầu của đề bài.

9 tháng 12 2017

Đáp án A

TH1: 4 cạnh với 4 màu khác nhau, có A 6 4 = 360 cách.

TH2: 4 cạnh với 3 màu khác nhau, vì 2 cạnh giống màu không được kề nhau nên có 2 cách đặt vị trí cho 2 giống màu (đặt ở vị trí đối diện nhau). Tiếp theo, có 2! cách cho 2 màu còn lại. Vậy có  C 6 3 . 3 .2.2 ! = 240

TH3: 4 cạnh với 2 màu khác nhau (giả sử xanh và đỏ), có 2 cách tô (AB=CD=xanh và AD=BC=đỏ/ hoặc AB=CD=đỏ và AD=BC=xanh) Trong trường hợp này có C 6 2 . 2 = 30  cách.

Vậy có tất cả 360 + 240 + 30 =   630  cách.

10 tháng 8 2019

Đáp án D

Chú ý 4 cạnh khác nhau

Có C 6 4 cách chọn 4 màu khác nhau. Từ mỗi bộ 4 màu thì có 4 ! = 24  cách tô màu khác nhau

Có C 6 3 cách chọn 3 màu khác nhau. Từ mỗi bộ 3 màu, có 4.3 = 12 cách tô

Có  C 6 2 cách chọn 2 màu khác nhau khi đó có: 2.1 = 2  cách tô 

Tổng cộng: 24. C 6 4 + 4.3 C 6 3 + 2. C 6 2 = 630  cách

18 tháng 4 2019

Đáp án D

Chú ý 4 cạnh khác nhau

Có  C 6 4  cách chọn 4 màu khác nhau. Từ mỗi bộ 4 màu thì có 4! = 24 cách tô màu khác nhau.

Có  C 6 3  cách chọn 3 màu khác nhau. Từ mỗi bộ 3 màu, có 4.3 = 12 cách tô.

Có  C 6 2  cách chọn 2 màu khác nhau khi đó có: 2.1 = 2 cách tô.

Tổng cộng:  24 . C 6 4 + 4 . 3 C 6 3 + 2 . C 6 2 = 630 cách.

8 tháng 11 2018

a) Tô màu đỏ vào hình vuông. Tô màu xanh vào phần còn lại của hình tròn.

Bài 60: 34 - 8 | Vở bài tập Toán lớp 2

b) Viết tiếp vào chỗ chấm :

+ Hình vuông đặt trên hình tròn

+ Hình tròn đặt dưới hình vuông.

9 tháng 9 2017

Chọn D

+ Tô màu ô vuông số 2: có C 3 2 cách chọn 2 trong 3 màu, có C 4 2 cách tô 2 màu đó lên 4 cạnh. Vậy có  C 3 2 C 4 2 = 18cách.

+ Tô màu ô vuông số 1,5,3: có C 2 1 cách chọn màu còn lại, có C 3 2 cách tô màu còn lại lên 3 cạnh còn lại của 1 hình vuông. Vậy có ( C 2 1 C 3 2 ) 3 = 6 3 cách

+ Tô màu ô vuông số 4,6: Mỗi 1 hình vuông có 2 cách tô màu. Vậy có 2 2 = 4cách.

Vậy có 18. 6 3 .4 = 15552 cách thỏa mãn.