K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

Người hạnh phúc và may mắn nhất trên đời khi làm một điều gì đó tốt đẹp và mang lại niềm vui cho mọi người,một phép lạ sẽ đến với bạn khi làm một việc tốt.Hay ghi nhớ thông điệp này và gửi cho 30 đến 50 người.Sẽ có điều bất ngờ và may mắn đến với bạn sau ngày hôm đó.Nếu bạn không gửi đi ngay sau khi đọc xong,bạn sẽ luôn bị xui xẻo Ai thương mẹ thì gửi cái này cho 15 người ko gửi mà xoá đi mẹ bạn sẽ chết trong vòng 2 ngày nữa

20 tháng 4 2018

Đặt \(f\left(x\right)=x+2\)

Vì \(f\left(x\right)\ne0\)

=> \(x+2\ne0\)

=> \(x\ne-2\)

Vậy khi \(x\ne-2\)thì f (x) vô nghiệm.

9 tháng 3 2021

có thể ghi đề rõ hơn được không

 

20 tháng 4 2018

Ta có :

x2 + 2x + 3

= x2 + 2.1.x + 12 + 2

= (x + 1 )2 + 2

vì ( x + 1 )2 \(\ge\)0 nên (x + 1 )2 + 2 > 0

suy ra : đa thức trên vô nghiệm

20 tháng 4 2018

\(\Delta=1-3=-2< 0\)Phương trình chắc chắn vô nghiệm

9 tháng 3 2021

f(x) = (2m-2)x+m-3=0

Nếu  2m-2=0 =>  m=1  =>  f(x)= 0+1-3=0 (vô lí)

=>  m=1 (nhận)

Nếu 2m-2\(\ne\)0  => m\(\ne\) 1

f(x) có no  x= 3-m/2m-2 

=> m\(\ne\)1 (loại)

Vậy m=1 thì f(x) vô nghiệm

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

9 tháng 5 2021

Ta có : \(\left(m-1\right)x^2-2\left(m-2\right)x+2-m>0\)

\(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(2-m\right)\left(m-1\right)\)

\(=m^2-4m+4+m^2-m-2=2m^2-5m+2\)

TH1 : m - 1 =0 => m = 1

- Thay m = 1 vào BPT ta được : 2x + 1 > 0

=> BPT có nghiệm ( L )

TH2 : \(m\ne1\)

- Để BPT trên vô nghiệm với mọi x thuộcR \(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}\le m\le2\\m< 1\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le m< 1\)

Vậy ...

 

 

 

9 tháng 5 2021

Sai r bn ơi

Bn phân tích ▲' ra sai r

27 tháng 1 2017

TH1: m = 0 ta có phương trình 4x + 5 = 0 ⇔ x = − 5 4

TH2: m ≠ 0

Ta có ∆ = [−2(m – 2)]2 – 4m (m + 5) = − 36m + 16

Để phương trình đã cho vô nghiệm thì:

m ≠ 0 − 36 m + 16 < 0 ⇔ m ≠ 0 36 m > 16

⇔ m ≠ 0 m > 8 19 ⇒ m > 8 19

Vậy với m > 8 19 thì phương trình đã cho vô nghiệm

Đáp án cần chọn là: A

a)

Phương trình bậc nhất một ẩn có dạng ax+b=0

trong đó: a khác 0

áp dụng vào pt(1)

để (1) là phương trình bậc nhất một ẩn khi

m-1 khác 0

<==>m khác 1

b) thay x=-5 vào (1) ta có

(m-1).(-5)+m=0

-m+5+m=0

5=0 (vô lý)

do đó không có giá trị của m thỏa mãn

c) để pt(1) vô nghiệm

khi m-1 =0

<=>m=1

vậy với m=1 thì pt vô nghiệm

Mk cũng không chắc là mk trả lời đúng đâu ~_~

có gì sai mong bạn bỏ qua ^_^