K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

Gọi ƯCLN(2n+1; 6n+5) là d. Ta có:

2n+1 chia hết cho d => 6n+3 chia hết cho d

6n+5 chia hết cho d

=> 6n+5-(6n+3) chia hết cho d

=> 2 chia hết cho d

Mà 2n+1 chia 2 dư 1

=> d = 1

=> \(\frac{2n+1}{6n+5}\)tối giản (Đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:

a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$

$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$

$\Rightarrow 2n+7-2(n+3)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$

Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.

b.

Gọi $d$ là ƯCLN $(4n+6, 6n+7)$

$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$

$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$

Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.

$\Rightarrow d=1$

$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.

7 tháng 3 2023

a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

17 tháng 7 2023

) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

 Đúng(0)   Cao yến Chi Cao yến Chi14 tháng 4 2020 lúc 12:42  

bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản

A=2n+1/2n+2

B=2n+3/3n+5

Bài 2: 

a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản

b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản

giúp mk với 

mk sẽ tick cho!!