Cho a/b biết 4/7<a/b<2/3 và 3a+7b=1994
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{a}{b}=\frac{4}{7}\Rightarrow a=\frac{4}{7}.b\)
Lại có b-a=81
thay \(a=\frac{4}{7}.b\)vào ta đc
\(b-\frac{4}{7}.b=81\Rightarrow b.\left(1-\frac{4}{7}\right)=81\)
\(\Rightarrow\frac{3}{7}.b=81\Rightarrow b=189\)
=> a=b-81=189-81=108
\(\Rightarrow\frac{a}{b}=\frac{108}{189}\)
Vậy .....
tk mk nha bn
\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)
\(\Rightarrow a-b=-1\)
\(\Rightarrow A=\left(-1\right)^5=?\)
\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)
\(\lim\limits_{x\rightarrow0}\dfrac{x}{\sqrt[7]{x+1}\left(\sqrt[]{x+4}-2\right)+2\left(\sqrt[7]{x+1}-1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{x}{\dfrac{x\sqrt[7]{x+1}}{\sqrt[]{x+4}+2}+\dfrac{2x}{\sqrt[7]{\left(x+1\right)^6}+\sqrt[7]{\left(x+1\right)^5}+\sqrt[7]{\left(x+1\right)^4}+\sqrt[7]{\left(x+1\right)^3}+\sqrt[7]{\left(x+1\right)^2}+\sqrt[7]{x+1}+1}}\)
\(=\dfrac{1}{\dfrac{1}{2+2}+\dfrac{2}{1+1+1+1+1+1+1}}=\dfrac{28}{15}\)