Cho \(A=\frac{3n+4}{n+2}\)
Tìm \(n\in Z\) để A có giá trị nhỏ nhất
Các bn giúp mk nha, mk đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
a) Để phân số có giá trị là số nguyên thì \(\left(n+7\right)⋮\left(2n+3\right)\)
\(\Rightarrow\left(2n+14\right)⋮\left(2n+3\right)\)
\(\Rightarrow\left[\left(2n+3\right)+11\right]⋮\left(2n+3\right)\)
\(\Rightarrow11⋮\left(2n+3\right)\)
\(\Rightarrow2n+3\inƯ\left(11\right)=\left\{-11; -1; 1; 11\right\}\)
\(\Rightarrow n\in\left\{-7; -2; -1; 4\right\}\)
b) Để phân số là số nguyên thì \(\left(3n-4\right)⋮\left(5n+2\right)\)
\(\Rightarrow\left(15n-20\right)⋮\left(5n+2\right)\)
\(\Rightarrow\left[3\left(5n+2\right)-26\right]⋮\left(5n+2\right)\)
\(\Rightarrow26⋮\left(5n+2\right)\)
\(\Rightarrow\left(5n+2\right)\inƯ\left(26\right)=\left\{-26;-13;-2;-1; 1; 2; 13; 26\right\}\)
Mà: \(n\in Z\Rightarrow5n+2\in\left\{-13;2\right\}\)
\(\Rightarrow n\in\left\{-3; 0\right\}\)
\(a,\) \(\frac{n+7}{2n+3}\) có giá trị nguyên
\(\Leftrightarrow\) \(n+7\) \(⋮\) \(2n+3\)
\(\Rightarrow\) \(2\left(n+7\right)\) \(⋮\) \(2n+3\)
\(\Rightarrow\) \(2n+14\) \(⋮\) \(2n+3\)
\(\Rightarrow\) \(2n+3+11\) \(⋮\) \(2n+3\)
\(2n+3\) \(⋮\) \(2n+3\)
\(\Rightarrow\) \(11\) \(⋮\) \(2n+3\)
\(\Rightarrow\) \(2n+3\inƯ\left(11\right)\)
\(\Rightarrow\) \(2n+3\in\left\{-1;-11;1;11\right\}\)
\(\Rightarrow\) \(2n\in\left\{-4;-14;-2;8\right\}\)
\(\Rightarrow\) \(n\in\left\{-2;-7;-1;4\right\}\)
b, nghĩ đã
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
\(A=\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)
Để A thuộc Z thì \(n+13⋮n+8\Rightarrow n+13-\left(n+8\right)⋮n+8\)
\(\Rightarrow5⋮n+8\Rightarrow n+8\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow n\in\left\{-7;-3;-9;-13\right\}\)
OK
Vì \(19⋮n+4\)
\(\Rightarrow n+4\varepsilon\left\{1;19\right\}\)
Vì n là STN nên n=19-4=15
b,\(\hept{\begin{cases}n+13⋮n+6\\n+6⋮n+6\end{cases}\Rightarrow n+13-n-6⋮n+6}\)
\(\Leftrightarrow7⋮n+6\)
\(\Rightarrow n+6\varepsilon\left\{1;7\right\}\)
vì n là STN nên n=7-6=1
c,\(\hept{\begin{cases}2n+25⋮n+6\\n+6⋮n+6\end{cases}\Rightarrow\hept{\begin{cases}2n+25⋮n+6\\2n+12⋮n+6\end{cases}}}\)
\(\Rightarrow2n+25-2n-12⋮n+6\)
\(\Leftrightarrow13⋮n+6\)
\(\Rightarrow n+6\varepsilon\left\{1;13\right\}\)
vì n là STN nên n=13-6=7
các phần còn lại bạn nhân vào rồi trừ hết x đi như phần c nha
trần tuấn anh ơi bạn có thể trả lời hết luôn 3 câu còn lại ko,hộ mk 1 chút nha
\(\frac{x-1}{9}=\frac{8}{3}\Rightarrow\)\(\frac{x-1}{9}=\frac{24}{9}\Rightarrow x-1=24\)
x=24+1
x=25
Vậy x=25
\(\frac{x-1}{9}=\frac{8}{3}\)
\(\Leftrightarrow\left(x-1\right):9=\frac{8}{3}\)
\(\Leftrightarrow\left(x-1\right)=24\)
\(\Leftrightarrow x=24+1\)
\(\Leftrightarrow x=25\)
a) Ta có : A= (n+1)/(n-2) = (n-2 +3)/(n -2) = 1+ 3/(n-2) Vậy để A nguyên thì (n-2) thuộc ước 3 ( +-1; +-3 ) <=> N-2 =1 <=> n =3 <=> N-2 =-1 <=> n= 1 <=> N-2 =3 <=> n= 5 <=> N-2 =-3 <=> n= -1
b) ta có : A max => (n-2) min mà (n-2) thuộc Z =>(n-2)>0 <=> (n-2 ) =1 <=> n=3
A=\(\frac{3n+4}{n+2}\)=\(\frac{3n+6-2}{n+2}\)=\(\frac{3.\left(n+2\right)-2}{n+2}\) =3-\(\frac{2}{n+2}\)
Để A có giá trị bé nhất=>\(\frac{2}{n+2}\) có giá trị lớn nhất
=>n+2 là số nguyên dương bé nhất
=>n+2=1=>n=-1 <=>A=1