ông sáu guu 1 số tiền vào ngân hàng theo mức lãi suất tiết kiệm với kì hạn 1 năm là 6%. tuy nhiên sau thời hạn 1 năm ông sau ko đến nhận tiền lại mà để thêm 1 năm nữa mới lanh . khi đó số tiền lại có được sau năm đầu tiên sẽ được ngân hàng cộng dồn vào số tiền gửi ban đầu để thành số tiền gửi cho năm kế tiếp với mức lãi suất cũ . sau 2 năm ông sáu nhận được số tiền là 112360000 . tính số tiền ban dau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi số tiền ông Sáu gửi ban đầu là x.
Theo đề bài ta có:
Số tiền lãi sau 1 năm ông Sáu nhận được là : 0,06x (đồng)
Số tiền lãi có được 1 năm của ông Sáu là : x + 0,06x = 1,06x (đồng)
Số tiền lãi năm thứ 2 ông Sáu nhận được là : 1,06x. 0,06 = 0,0636x (đồng)
Do vậy, số tiền tổng cộng sau 2 năm ông Sáu nhận được là : 1,06x + 0,0636x = 1,1236x (đồng)
Mặt khác: 1,1236x = 112360000 nên x = 100000000(đồng) hay 100 triệu đồng
Vậy ban đầu ông Sáu đã gửi 100 triệu đồng.
Tổng % lãi suất trong 2 năm là :
6% . 2 = 12%
Số tiền lãi trong 2 năm là :
112360000 . 12% = 13483200
=> Tiền ông Sáu gửi là :
112360000 - 13483200 = 98876800
a) \(A=\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2-\sqrt{3}}{1+\sqrt{3}+1}+\frac{2+\sqrt{3}}{1-\sqrt{3}+1}\)
\(=\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{2+\sqrt{3}}{2-\sqrt{3}}\)
\(=\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=\frac{4-4\sqrt{3}+3+4+4\sqrt{3}+3}{4-3}\)
\(=14\)
a) A = \(\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}\) = \(\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3.1+1}}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3.1+1}}}\) = \(\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3+1}\right)^2}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3-1}\right)^2}}\) = \(\frac{2-\sqrt{3}}{1+\sqrt{3+1}}\) + \(\frac{2+\sqrt{3}}{1-\sqrt{3+1}}\) = \(\frac{2-\sqrt{3}}{2+\sqrt{3}}\) + \(\frac{2+\sqrt{3}}{2-\sqrt{3}}\) = \(\frac{\left(4-4\sqrt{3+3}\right)+\left(4+4\sqrt{3+3}\right)}{4-3}\) = \(\frac{14}{1}\) = 1
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
Sau tháng thứ nhất, số tiền còn lại là
Sau tháng thứ hai số tiền còn lại là
Sau 12 tháng số tiền còn lại là
Chọn D.
Sau tháng thứ nhất, số tiền còn lại là
Sau tháng thứ hai số tiền còn lại là
Sau 12 tháng số tiền còn lại là
a) Số tiền lãi mà ông Sáu nhận được sau 1 năm là:
= 500 triệu x 0.05 x 1 = 25 triệu đồng
b) Tỉ số phần trăm giữa tiền gửi ban đầu và số tiền nhận được (cả vốn lẫn lãi) sau 1 năm của ông Sáu là:
\(\dfrac{103}{250}\)
Tổng số tiền ông Sáu nhận được sau 1 năm là:
525 triệu / 500 triệu x 100% = 105%
Vậy tỉ số phần trăm giữa tiền gửi ban đầu và số tiền nhận được (cả vốn lẫn lãi) sau 1 năm của ông Sáu là 105%.
Số tiền cả gốc lẫn lãi sau 1 năm là:
\(100000000\cdot\left(1+5\%\right)=105000000\left(đ\right)\)
Số tiền cả gốc lẫn lãi sau 2 năm tiếp là:
\(105000000\cdot\left(1+5\%\right)=110250000\left(đ\right)\)
Số tiền cả gốc lẫn lãi sau 3 năm tiếp là:
\(110250000\cdot\left(1+5\%\right)=115762500\left(đ\right)\)
Vậy: Cứ như thế sau ba năm thì số tiền cả gốc lẫn lãi là \(115762500\) đồng
(\(100\%=\dfrac{100}{100}=1\)).
Đáp án A
Phương pháp:
Công thức lãi kép, không kỳ hạn: An = M(1 + r%)n
Với:
An là số tiền nhận được sau tháng thứ n,
M là số tiền gửi ban đầu,
n là thời gian gửi tiền (tháng),
r là lãi suất định kì (%)
Cách giải:
Số tiền ông An rút lần 1 là: 100.(1 + 8%)5 = 146,9328077 (triệu đồng)
Số tiền ông An gửi lần 2 là: 146.9328077 : 2 = 73,46640384 (triệu đồng)
Số tiền ông An rút lần 2 (gửi 5 năm tiếp theo) là:
73,46640384.(1 + 8%)5 = 107,9462499 (triệu đồng)
Số tiền lãi là: 107,9462499 - 73,4660384 = 34,47984602 ≈ 34,480 (triệu đồng).
Đáp án D
Số tiền mà ông An nhận được là
T = 50.10 6 . 1 + 8 , 4 4 % 3 . 1 + 12 4 % 4 ≈ 59.895.767 đ ồ n g .
Đáp án D
Số tiền mà ông An nhận được là
T = 50.10 6 . 1 + 8 , 4 4 % 3 . 1 + 12 4 % 4 ≈ 59.895.767 đồng .