Cho B= 3+3^3=3^5+...+3^1991
A/ Hỏi B có bao nhiêu số hạng
B/ Chứng tỏ B chia hết 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=3(1+3+3^2+3^3)+.......+3^97(1+3+3^2+3^3)
C=3.40+...........+3^97.40
C=40(3+...+3^97) vậy C chia hết cho 40
b, ta có số hàng nghìn có 5 cách chọn
hàng trăm có 4 cách chọn
hàng chục có 3 cách chọn
hàng đơn vị có 2 cách chọn
Vậy có thể lập được số số là 5.4.3.2=120(cách)
\(C=3+3^2+3^3+3^4+......+3^{100}=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
=3.(1+3+32+33)+...+397.(1+3+32+33)
=3.40+...+397.40
=40.(3+...+397) chia hết cho 40
=> C chia hết cho 40
b.hàng nghìn có 3 cách chọn
hàng trăm có 4 cách chọn
hàng chục có 5 cách chọn
hàng đv có 2 cách chọn
=> có 2.3.4.5=120(số|)
ta có :
A= (3+3^2)+(3^3+3^4)+.......+ (3^15+3^16)
A=3.(3+1)+3^3.(3+1)+.....+3^15.(3+1)
A= 3.4+3^3.4+......+3^15.4
A=4.(3+3^3+.....+3^15) chia hết cho 4
vậy a chia hết cho 4
b. Ta có :
A= (3+3^2+3^3)+......+(3^14+3^15+3^16)
A=3.(1+3+3^2)+.....+3^14.(1+3+3^2)
A=3.13+.....+3^14.13 chia hết cho 13
Vậy A chia hết cho 13
Bài 1:
B = 1 + 2 + 3 + 4 + ... + 2001
= (2001 + 1) . (2001 - 1 + 1) : 2
= 2002 . 2001 : 2
= 2003001
Vậy B không chia hết cho 2
Bài 2:
*) Số 10¹⁰ + 8 = 10000000008
- Có chữ số tận cùng là 8 nên chia hết cho 2
- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9
Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9
*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)
- Có chữ số tận cùng là 5 nên chia hết cho 5
- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3
Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5
b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)
- Có chữ số tận cùng là 4 nên chia hết cho 2
- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
B1 :
\(B=1+2+3+4+...+2001\)
\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)
\(B=2001.2002:2=2003001\)
- Tận cùng là 1 nên B không chia hết cho 2
- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9
- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)
B= 3+3^3+3^5+...+3^1991
a)Các số hạng của B là: (1991-1):2+1=996(số hạng)
b)
B=3+3^3+3^5+...+3^1991
B=(3+3^3+3^5)+(3^6+3^7+3^8)+...+(3^1989+3^1990+3^1991)
= 3(3^2+3^4+1)+3^6(3+3^2+1)+...+3^1989(3+3^2+1)
=3.91+3^6.13+...+3^1989.13
Ta thấy : 3.91 chia hết cho 91 => chia hết cho 13
3^6.13 chia hết cho 13.
....
3^1989.13 chia hết cho 13.
=> =3.91+3^6.13+...+3^1989.13 chia hết cho 13.
=> ĐPCM